Cargando…
Identification of Molecular Determinants in iRhoms1 and 2 That Contribute to the Substrate Selectivity of Stimulated ADAM17
The metalloprotease ADAM17 is a key regulator of the TNFα, IL-6R and EGFR signaling pathways. The maturation and function of ADAM17 is controlled by the seven-membrane-spanning proteins iRhoms1 and 2. The functional properties of the ADAM17/iRhom1 and ADAM17/iRhom2 complexes differ, in that stimulat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654401/ https://www.ncbi.nlm.nih.gov/pubmed/36361585 http://dx.doi.org/10.3390/ijms232112796 |
Sumario: | The metalloprotease ADAM17 is a key regulator of the TNFα, IL-6R and EGFR signaling pathways. The maturation and function of ADAM17 is controlled by the seven-membrane-spanning proteins iRhoms1 and 2. The functional properties of the ADAM17/iRhom1 and ADAM17/iRhom2 complexes differ, in that stimulated shedding of most ADAM17 substrates tested to date can be supported by iRhom2, whereas iRhom1 can only support stimulated shedding of very few ADAM17 substrates, such as TGFα. The first transmembrane domain (TMD1) of iRhom2 and the sole TMD of ADAM17 are important for the stimulated shedding of ADAM17 substrates by iRhom2. However, little is currently known about how the iRhoms interact with different substrates to control their stimulated shedding by ADAM17. To provide new insights into this topic, we tested how various chimeras between iRhom1 and iRhom2 affect the stimulated processing of the EGFR-ligands TGFα (iRhom1- or 2-dependent) and EREG (iRhom2-selective) by ADAM17. This uncovered an important role for the TMD7 of the iRhoms in determining their substrate selectivity. Computational methods utilized to characterize the iRhom1/2/substrate interactions suggest that the substrate selectivity is determined, at least in part, by a distinct accessibility of the substrate cleavage site to stimulated ADAM17. These studies not only provide new insights into why the substrate selectivity of stimulated iRhom2/ADAM17 differs from that of iRhom1/ADAM17, but also suggest new approaches for targeting the release of specific ADAM17 substrates. |
---|