Cargando…

Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador

Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob. (Asteraceae) is a plant native to southern Ecuador. The dry leaves afforded, by steam distillation, an essential oil that was qualitatively and quantitatively analyzed by GC-MS and GC-FID, respectively, on two orthogonal columns of dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Malagón, Omar, Bravo, Cinthia, Vidari, Giovanni, Cumbicus, Nixon, Gilardoni, Gianluca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654423/
https://www.ncbi.nlm.nih.gov/pubmed/36365423
http://dx.doi.org/10.3390/plants11212972
Descripción
Sumario:Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob. (Asteraceae) is a plant native to southern Ecuador. The dry leaves afforded, by steam distillation, an essential oil that was qualitatively and quantitatively analyzed by GC-MS and GC-FID, respectively, on two orthogonal columns of different polarity. Sesquiterpenes predominated in the volatile fraction, among which α-zingiberene (19.7–19.1%), ar-curcumene (17.3–18.1%), caryophyllene oxide (5.1–5.3%), (Z)-β-caryophyllene (3.0–3.1%), (2Z,6Z)-farnesal (2.6–3.6%), and spathulenol (2.0–2.1%) were the major components. In addition to the identified compounds, two main unidentified constituents (possibly oxygenated sesquiterpenes) with probable molecular masses of 292 and 230, respectively, were detected. They constituted about 5% and 8% (w/w), respectively, of the whole essential oil. The oil chemical composition was complemented with the enantioselective analysis of ten chiral components. Four scalemic mixtures and six enantiomerically pure terpenes were identified. An enantiomeric excess (ee) was determined for (1R,5R)-(+)-β-pinene (65.0%), (R)-(−)-α-phellandrene (94.6%), (S)-(+)-linalool (15.0%), and (R)-(−)-terpinen-4-ol (33.8%). On the other hand, (1R,5R)-(+)-α-pinene, (1R,5R)-(+)-sabinene, (S)-(−)-limonene, (S)-(+)-β-phellandrene, (1R,2S,6S,7S,8S)-(−)-α-copaene, and (R)-(+)-germacrene D were enantiomerically pure. Finally, the non-volatile fraction obtained by extraction of the leaves with MeOH was investigated. Eight known compounds were isolated by liquid column chromatographic separations. Their structures were determined by NMR spectroscopy as dehydroleucodine, kauniolide, (3S,3aR,4aR,6aS,9aS,9bR)-3-hydroxy-1,4a-dimethyl-7-methylene-5,6,6a,7,9a,9b-hexahydro-3H-oxireno[2′,3′:8,8a]azuleno[4,5-b]furan-8(4aH)-one, novanin, bisabola-1,10-diene-3,4-trans-diol, (R)-2-(2-(acetoxymethyl)oxiran-2-yl)-5-methylphenyl isobutyrate, eupalitin-3-O-glucoside, and 3,5-di-O-caffeoylquinic acid. Literature data about the identified metabolites indicate that K. longipetiolata is a rich source of biologically active natural products.