Cargando…

Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor

Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Santonocito, Rossella, Tuccitto, Nunzio, Pappalardo, Andrea, Trusso Sfrazzetto, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654496/
https://www.ncbi.nlm.nih.gov/pubmed/36364331
http://dx.doi.org/10.3390/molecules27217503
Descripción
Sumario:Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm–100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid–base cycles, paving the way for the realization of real practical sensor for human dopamine detection.