Cargando…
Public Discourse Surrounding Suicide during the COVID-19 Pandemic: An Unsupervised Machine Learning Analysis of Twitter Posts over a One-Year Period
Many studies have forewarned the profound emotional and psychosocial impact of the protracted COVID-19 pandemic. This study thus aimed to examine how individuals relate to suicide amid the COVID-19 pandemic from a global perspective via the public Twitter discourse around suicide and COVID-19. Origi...
Autores principales: | Lim, Shu Rong, Ng, Qin Xiang, Xin, Xiaohui, Lim, Yu Liang, Boon, Evelyn Swee Kim, Liew, Tau Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654513/ https://www.ncbi.nlm.nih.gov/pubmed/36360713 http://dx.doi.org/10.3390/ijerph192113834 |
Ejemplares similares
-
Examining the Public Messaging on ‘Loneliness’ over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period
por: Ng, Qin Xiang, et al.
Publicado: (2022) -
Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts
por: Ng, Q.X., et al.
Publicado: (2022)