Cargando…
Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma
Deep learning for the analysis of H&E stains requires a large annotated training set. This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize and evaluate computer-assisted annotation based on digital dual stains of the same tissue section. H&E stains...
Autores principales: | Nielsen, Patricia Switten, Georgsen, Jeanette Baehr, Vinding, Mads Sloth, Østergaard, Lasse Riis, Steiniche, Torben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654525/ https://www.ncbi.nlm.nih.gov/pubmed/36361209 http://dx.doi.org/10.3390/ijerph192114327 |
Ejemplares similares
-
Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma
por: Nielsen, Patricia Switten, et al.
Publicado: (2016) -
Systemic Inflammation Associates With a Myeloid Inflamed Tumor Microenvironment in Primary Resected Colon Cancer—May Cold Tumors Simply Be Too Hot?
por: Køstner, Anne Helene, et al.
Publicado: (2021) -
Deep learning-based transformation of H&E stained tissues into special stains
por: de Haan, Kevin, et al.
Publicado: (2021) -
Pregnancy-Associated Plasma Protein-A2 Is Associated With Mortality in Patients With Lung Cancer
por: Hjortebjerg, Rikke, et al.
Publicado: (2020) -
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks
por: Yi, Faliu, et al.
Publicado: (2018)