Cargando…
Accurate and Comprehensive Spectrum Characterization for Cavity-Enhanced Electro-Optic Comb Generators
Cavity-enhanced electro-optic comb generators (CEEOCGs) can provide optical frequency combs with excellent stability and configurability. The existing methods for CEEOCGs spectrum characterization, however, are based on approximations and have suffered from either iterative calculations or limited a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654568/ https://www.ncbi.nlm.nih.gov/pubmed/36364682 http://dx.doi.org/10.3390/nano12213907 |
Sumario: | Cavity-enhanced electro-optic comb generators (CEEOCGs) can provide optical frequency combs with excellent stability and configurability. The existing methods for CEEOCGs spectrum characterization, however, are based on approximations and have suffered from either iterative calculations or limited applicable conditions. In this paper, we show a spectrum characterization method by accumulating the optical electrical field with respect to the count of the round-trip propagation inside of CEEOCGs. The identity transformation and complete analysis of the intracavity phase delay were conducted to eliminate approximations and be applicable to arbitrary conditions, respectively. The calculation efficiency was improved by the noniterative matrix operations. Setting the maximum propagation count as 1000, the spectrum of the center ±300 comb modes can be characterized with merely the truncation error of floating-point numbers within 1.2 s. More importantly, the effects of all CEEOCG parameters were comprehensively characterized for the first time. Accordingly, not only the exact working condition of CEEOCG can be identified for further optimization, but also the power of each comb mode can be predicted accurately and efficiently for applications in optical communications and waveform synthesis. |
---|