Cargando…
M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural Activity
Emotion recognition, or the ability of computers to interpret people’s emotional states, is a very active research area with vast applications to improve people’s lives. However, most image-based emotion recognition techniques are flawed, as humans can intentionally hide their emotions by changing f...
Autores principales: | Akter, Sumya, Prodhan, Rumman Ahmed, Pias, Tanmoy Sarkar, Eisenberg, David, Fresneda Fernandez, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654596/ https://www.ncbi.nlm.nih.gov/pubmed/36366164 http://dx.doi.org/10.3390/s22218467 |
Ejemplares similares
-
Accuracy Improvement of Vehicle Recognition by Using Smart Device Sensors †
por: Pias, Tanmoy Sarkar, et al.
Publicado: (2022) -
Emotional Speech Recognition Using Deep Neural Networks
por: Trinh Van, Loan, et al.
Publicado: (2022) -
EmotionNet Nano: An Efficient Deep Convolutional Neural Network Design for Real-Time Facial Expression Recognition
por: Lee, James Ren, et al.
Publicado: (2021) -
Speech Emotion Recognition with Heterogeneous Feature Unification of Deep Neural Network
por: Jiang, Wei, et al.
Publicado: (2019) -
Efficient recognition of dynamic user emotions based on deep neural networks
por: Zheng, Qi
Publicado: (2022)