Cargando…
Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations
Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to impr...
Autores principales: | Lee, Soojeong, Moon, Hyeonjoon, Al-antari, Mugahed A., Lee, Gangseong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654728/ https://www.ncbi.nlm.nih.gov/pubmed/36366083 http://dx.doi.org/10.3390/s22218386 |
Ejemplares similares
-
Combining Gaussian Process with Hybrid Optimal Feature Decision in Cuffless Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2023) -
Uncertainty in Blood Pressure Measurement Estimated Using Ensemble-Based Recursive Methodology
por: Lee, Soojeong, et al.
Publicado: (2020) -
On Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation
por: Lee, Soojeong, et al.
Publicado: (2013) -
Statistical Approaches Based on Deep Learning Regression for Verification of Normality of Blood Pressure Estimates
por: Lee, Soojeong, et al.
Publicado: (2019) -
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
por: Wei, Wei, et al.
Publicado: (2016)