Cargando…
Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal
Automatic pain intensity assessment from physiological signals has become an appealing approach, but it remains a largely unexplored research topic. Most studies have used machine learning approaches built on carefully designed features based on the domain knowledge available in the literature on th...
Autores principales: | Pouromran, Fatemeh, Lin, Yingzi, Kamarthi, Sagar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654781/ https://www.ncbi.nlm.nih.gov/pubmed/36365785 http://dx.doi.org/10.3390/s22218087 |
Ejemplares similares
-
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation
por: Pouromran, Fatemeh, et al.
Publicado: (2021) -
RNN and BiLSTM Fusion for Accurate Automatic Epileptic Seizure Diagnosis Using EEG Signals
por: Samee, Nagwan Abdel, et al.
Publicado: (2022) -
Analysis of pain research literature through keyword Co-occurrence networks
por: Ozek, Burcu, et al.
Publicado: (2023) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy
por: Najafi, Tahereh, et al.
Publicado: (2022)