Cargando…

Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors

Magnetic field sensors installed in the road infrastructure can be used for autonomous traffic flow parametrization. Although the main goal of such a measuring system is the recognition of the class of vehicle and classification, velocity is the essential parameter for further calculation and it mus...

Descripción completa

Detalles Bibliográficos
Autores principales: Miklusis, Donatas, Markevicius, Vytautas, Navikas, Dangirutis, Ambraziunas, Mantas, Cepenas, Mindaugas, Valinevicius, Algimantas, Zilys, Mindaugas, Okarma, Krzysztof, Cuinas, Inigo, Andriukaitis, Darius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654797/
https://www.ncbi.nlm.nih.gov/pubmed/36365966
http://dx.doi.org/10.3390/s22218269
_version_ 1784829022328324096
author Miklusis, Donatas
Markevicius, Vytautas
Navikas, Dangirutis
Ambraziunas, Mantas
Cepenas, Mindaugas
Valinevicius, Algimantas
Zilys, Mindaugas
Okarma, Krzysztof
Cuinas, Inigo
Andriukaitis, Darius
author_facet Miklusis, Donatas
Markevicius, Vytautas
Navikas, Dangirutis
Ambraziunas, Mantas
Cepenas, Mindaugas
Valinevicius, Algimantas
Zilys, Mindaugas
Okarma, Krzysztof
Cuinas, Inigo
Andriukaitis, Darius
author_sort Miklusis, Donatas
collection PubMed
description Magnetic field sensors installed in the road infrastructure can be used for autonomous traffic flow parametrization. Although the main goal of such a measuring system is the recognition of the class of vehicle and classification, velocity is the essential parameter for further calculation and it must be estimated with high reliability. In-field test campaigns, during actual traffic conditions, showed that commonly accepted velocity estimation methods occasionally produce highly erroneous results. For anomaly detection, we propose a criterion and two different correction algorithms. Non-linear signal rescaling and time-based segmentation algorithms are presented and compared for faulty result mitigation. The first one consists of suppressing the highly distorted signal peaks and looking for the best match with cross-correlation. The second approach relies on signals segmentation according to the feature points and multiple cross-correlation comparisons. The proposed two algorithms are evaluated with a dataset of over 300 magnetic signatures of a vehicle from unconstraint traffic conditions. Results show that the proposed criteria highlight all greatly faulty results and that the correction algorithms reduce the maximum error by twofold, but due to the increased mean error, mitigation technics shall be used explicitly with distorted signals.
format Online
Article
Text
id pubmed-9654797
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96547972022-11-15 Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors Miklusis, Donatas Markevicius, Vytautas Navikas, Dangirutis Ambraziunas, Mantas Cepenas, Mindaugas Valinevicius, Algimantas Zilys, Mindaugas Okarma, Krzysztof Cuinas, Inigo Andriukaitis, Darius Sensors (Basel) Article Magnetic field sensors installed in the road infrastructure can be used for autonomous traffic flow parametrization. Although the main goal of such a measuring system is the recognition of the class of vehicle and classification, velocity is the essential parameter for further calculation and it must be estimated with high reliability. In-field test campaigns, during actual traffic conditions, showed that commonly accepted velocity estimation methods occasionally produce highly erroneous results. For anomaly detection, we propose a criterion and two different correction algorithms. Non-linear signal rescaling and time-based segmentation algorithms are presented and compared for faulty result mitigation. The first one consists of suppressing the highly distorted signal peaks and looking for the best match with cross-correlation. The second approach relies on signals segmentation according to the feature points and multiple cross-correlation comparisons. The proposed two algorithms are evaluated with a dataset of over 300 magnetic signatures of a vehicle from unconstraint traffic conditions. Results show that the proposed criteria highlight all greatly faulty results and that the correction algorithms reduce the maximum error by twofold, but due to the increased mean error, mitigation technics shall be used explicitly with distorted signals. MDPI 2022-10-28 /pmc/articles/PMC9654797/ /pubmed/36365966 http://dx.doi.org/10.3390/s22218269 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Miklusis, Donatas
Markevicius, Vytautas
Navikas, Dangirutis
Ambraziunas, Mantas
Cepenas, Mindaugas
Valinevicius, Algimantas
Zilys, Mindaugas
Okarma, Krzysztof
Cuinas, Inigo
Andriukaitis, Darius
Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title_full Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title_fullStr Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title_full_unstemmed Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title_short Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
title_sort erroneous vehicle velocity estimation correction using anisotropic magnetoresistive (amr) sensors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654797/
https://www.ncbi.nlm.nih.gov/pubmed/36365966
http://dx.doi.org/10.3390/s22218269
work_keys_str_mv AT miklusisdonatas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT markeviciusvytautas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT navikasdangirutis erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT ambraziunasmantas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT cepenasmindaugas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT valineviciusalgimantas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT zilysmindaugas erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT okarmakrzysztof erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT cuinasinigo erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors
AT andriukaitisdarius erroneousvehiclevelocityestimationcorrectionusinganisotropicmagnetoresistiveamrsensors