Cargando…
Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats
Liver resection is a common treatment for various conditions and often requires blood transfusions to compensate for operative blood loss. As partial hepatectomy (PHx) is frequently performed in patients with a pre-damaged liver, avoiding further injury is of paramount clinical importance. Our aim w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654889/ https://www.ncbi.nlm.nih.gov/pubmed/36359918 http://dx.doi.org/10.3390/cells11213522 |
_version_ | 1784829047747903488 |
---|---|
author | Abudi, Nathalie Duev, Omri Asraf, Tal Blank, Simcha Matot, Idit Abramovitch, Rinat |
author_facet | Abudi, Nathalie Duev, Omri Asraf, Tal Blank, Simcha Matot, Idit Abramovitch, Rinat |
author_sort | Abudi, Nathalie |
collection | PubMed |
description | Liver resection is a common treatment for various conditions and often requires blood transfusions to compensate for operative blood loss. As partial hepatectomy (PHx) is frequently performed in patients with a pre-damaged liver, avoiding further injury is of paramount clinical importance. Our aim was to study the impact of red blood cell (RBC) resuscitation on liver regeneration. We assessed the impact of RBC storage time on liver regeneration following 50% PHx in rats and explored possible contributing molecular mechanisms using immunohistochemistry, RNA-Seq, and macrophage depletion. The liver was successfully regenerated after PHx when rats were transfused with fresh RBCs (F-RBCs). However, in rats resuscitated with stored RBCs (S-RBCs), the regeneration process was disrupted, as detected by delayed hepatocyte proliferation and lack of hypertrophy. The delayed regeneration was associated with elevated numbers of hemorrhage-activated liver macrophages (Mhem) secreting HO-1. Depletion of macrophages prior to PHx and transfusion improved the regeneration process. Gene expression profiling revealed alterations in numerous genes belonging to critical pathways, including cell cycle and DNA replication, and genes associated with immune cell activation, such as chemokine signaling and platelet activation and adhesion. Our results implicate activated macrophages in delayed liver regeneration following S-RBC transfusion via HO-1 and PAI-1 overexpression. |
format | Online Article Text |
id | pubmed-9654889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96548892022-11-15 Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats Abudi, Nathalie Duev, Omri Asraf, Tal Blank, Simcha Matot, Idit Abramovitch, Rinat Cells Article Liver resection is a common treatment for various conditions and often requires blood transfusions to compensate for operative blood loss. As partial hepatectomy (PHx) is frequently performed in patients with a pre-damaged liver, avoiding further injury is of paramount clinical importance. Our aim was to study the impact of red blood cell (RBC) resuscitation on liver regeneration. We assessed the impact of RBC storage time on liver regeneration following 50% PHx in rats and explored possible contributing molecular mechanisms using immunohistochemistry, RNA-Seq, and macrophage depletion. The liver was successfully regenerated after PHx when rats were transfused with fresh RBCs (F-RBCs). However, in rats resuscitated with stored RBCs (S-RBCs), the regeneration process was disrupted, as detected by delayed hepatocyte proliferation and lack of hypertrophy. The delayed regeneration was associated with elevated numbers of hemorrhage-activated liver macrophages (Mhem) secreting HO-1. Depletion of macrophages prior to PHx and transfusion improved the regeneration process. Gene expression profiling revealed alterations in numerous genes belonging to critical pathways, including cell cycle and DNA replication, and genes associated with immune cell activation, such as chemokine signaling and platelet activation and adhesion. Our results implicate activated macrophages in delayed liver regeneration following S-RBC transfusion via HO-1 and PAI-1 overexpression. MDPI 2022-11-07 /pmc/articles/PMC9654889/ /pubmed/36359918 http://dx.doi.org/10.3390/cells11213522 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abudi, Nathalie Duev, Omri Asraf, Tal Blank, Simcha Matot, Idit Abramovitch, Rinat Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title | Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title_full | Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title_fullStr | Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title_full_unstemmed | Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title_short | Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats |
title_sort | premature macrophage activation by stored red blood cell transfusion halts liver regeneration post-partial hepatectomy in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654889/ https://www.ncbi.nlm.nih.gov/pubmed/36359918 http://dx.doi.org/10.3390/cells11213522 |
work_keys_str_mv | AT abudinathalie prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats AT duevomri prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats AT asraftal prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats AT blanksimcha prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats AT matotidit prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats AT abramovitchrinat prematuremacrophageactivationbystoredredbloodcelltransfusionhaltsliverregenerationpostpartialhepatectomyinrats |