Cargando…

Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films

Femtosecond laser-modified amorphous silicon (a-Si) films with optical and electrical anisotropy have perspective polarization-sensitive applications in optics, photovoltaics, and sensors. We demonstrate the formation of one-dimensional femtosecond laser-induced periodic surface structures (LIPSS) o...

Descripción completa

Detalles Bibliográficos
Autores principales: Shuleiko, Dmitrii, Zabotnov, Stanislav, Martyshov, Mikhail, Amasev, Dmitrii, Presnov, Denis, Nesterov, Vyacheslav, Golovan, Leonid, Kashkarov, Pavel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654927/
https://www.ncbi.nlm.nih.gov/pubmed/36363204
http://dx.doi.org/10.3390/ma15217612
_version_ 1784829058015559680
author Shuleiko, Dmitrii
Zabotnov, Stanislav
Martyshov, Mikhail
Amasev, Dmitrii
Presnov, Denis
Nesterov, Vyacheslav
Golovan, Leonid
Kashkarov, Pavel
author_facet Shuleiko, Dmitrii
Zabotnov, Stanislav
Martyshov, Mikhail
Amasev, Dmitrii
Presnov, Denis
Nesterov, Vyacheslav
Golovan, Leonid
Kashkarov, Pavel
author_sort Shuleiko, Dmitrii
collection PubMed
description Femtosecond laser-modified amorphous silicon (a-Si) films with optical and electrical anisotropy have perspective polarization-sensitive applications in optics, photovoltaics, and sensors. We demonstrate the formation of one-dimensional femtosecond laser-induced periodic surface structures (LIPSS) on the surface of phosphorus- (n-a-Si) and boron-doped (p-a-Si) amorphous silicon films. The LIPSS are orthogonal to the laser polarization, and their period decreases from 1.1 ± 0.1 µm to 0.84 ± 0.07 µm for p-a-Si and from 1.06 ± 0.03 to 0.98 ± 0.01 for n-a-Si when the number of laser pulses per unit area increases from 30 to 120. Raman spectra analysis indicates nonuniform nanocrystallization of the irradiated films, with the nanocrystalline Si phase volume fraction decreasing with depth from ~80 to ~40% for p-a-Si and from ~20 to ~10% for n-a-Si. LIPSS’ depolarizing effect, excessive ablation of the film between LIPSS ridges, as well as anisotropic crystalline phase distribution within the film lead to the emergence of conductivity anisotropy of up to 1 order for irradiated films. Current–voltage characteristic nonlinearity observed for modified p-a-Si samples may be associated with the presence of both the crystalline and amorphous phases, resulting in the formation of potential barriers for the in-plane carrier transport and Schottky barriers at the electric contacts.
format Online
Article
Text
id pubmed-9654927
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96549272022-11-15 Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films Shuleiko, Dmitrii Zabotnov, Stanislav Martyshov, Mikhail Amasev, Dmitrii Presnov, Denis Nesterov, Vyacheslav Golovan, Leonid Kashkarov, Pavel Materials (Basel) Article Femtosecond laser-modified amorphous silicon (a-Si) films with optical and electrical anisotropy have perspective polarization-sensitive applications in optics, photovoltaics, and sensors. We demonstrate the formation of one-dimensional femtosecond laser-induced periodic surface structures (LIPSS) on the surface of phosphorus- (n-a-Si) and boron-doped (p-a-Si) amorphous silicon films. The LIPSS are orthogonal to the laser polarization, and their period decreases from 1.1 ± 0.1 µm to 0.84 ± 0.07 µm for p-a-Si and from 1.06 ± 0.03 to 0.98 ± 0.01 for n-a-Si when the number of laser pulses per unit area increases from 30 to 120. Raman spectra analysis indicates nonuniform nanocrystallization of the irradiated films, with the nanocrystalline Si phase volume fraction decreasing with depth from ~80 to ~40% for p-a-Si and from ~20 to ~10% for n-a-Si. LIPSS’ depolarizing effect, excessive ablation of the film between LIPSS ridges, as well as anisotropic crystalline phase distribution within the film lead to the emergence of conductivity anisotropy of up to 1 order for irradiated films. Current–voltage characteristic nonlinearity observed for modified p-a-Si samples may be associated with the presence of both the crystalline and amorphous phases, resulting in the formation of potential barriers for the in-plane carrier transport and Schottky barriers at the electric contacts. MDPI 2022-10-29 /pmc/articles/PMC9654927/ /pubmed/36363204 http://dx.doi.org/10.3390/ma15217612 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shuleiko, Dmitrii
Zabotnov, Stanislav
Martyshov, Mikhail
Amasev, Dmitrii
Presnov, Denis
Nesterov, Vyacheslav
Golovan, Leonid
Kashkarov, Pavel
Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title_full Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title_fullStr Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title_full_unstemmed Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title_short Femtosecond Laser Fabrication of Anisotropic Structures in Phosphorus- and Boron-Doped Amorphous Silicon Films
title_sort femtosecond laser fabrication of anisotropic structures in phosphorus- and boron-doped amorphous silicon films
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654927/
https://www.ncbi.nlm.nih.gov/pubmed/36363204
http://dx.doi.org/10.3390/ma15217612
work_keys_str_mv AT shuleikodmitrii femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT zabotnovstanislav femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT martyshovmikhail femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT amasevdmitrii femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT presnovdenis femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT nesterovvyacheslav femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT golovanleonid femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms
AT kashkarovpavel femtosecondlaserfabricationofanisotropicstructuresinphosphorusandborondopedamorphoussiliconfilms