Cargando…

Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins

Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. Retrofi...

Descripción completa

Detalles Bibliográficos
Autores principales: Na Nagara, Viravid, Sarkar, Dibyendu, Datta, Rupali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654934/
https://www.ncbi.nlm.nih.gov/pubmed/36363996
http://dx.doi.org/10.3390/molecules27217169
Descripción
Sumario:Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. Retrofitting catch basins to enhance their phosphorus and heavy metal removal can be an effective approach. In this study, aluminum-based water treatment residual (WTR, a non-hazardous byproduct of the water treatment process) was granulated via a green method to serve as a sustainable filter material, called WTR granules, for enhancing the capabilities of catch basins to remove phosphorus and heavy metals. The WTR granules were field tested in a parking lot in Hoboken, New Jersey. Twelve storm events were monitored. The results showed that the WTR granules significantly (p < 0.05) reduced dissolved P, Cu, and Zn, as well as total P, Cu, Pb, and Zn concentrations in stormwater runoff without signs of disintegration. No flooding or water ponding was observed during the implementation. Results suggest the WTR granules are an inexpensive, green filter material that can be used for retrofitting catch basins to remove phosphorus and heavy metals effectively.