Cargando…
High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division
Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive adoption of LED lighting and mobile devices. However, most existing studies do not consider the performance bottleneck of Region o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655111/ https://www.ncbi.nlm.nih.gov/pubmed/36366071 http://dx.doi.org/10.3390/s22218375 |
_version_ | 1784829105567432704 |
---|---|
author | Hu, Xin Zhang, Pinpin Sun, Yimao Deng, Xiong Yang, Yanbing Chen, Liangyin |
author_facet | Hu, Xin Zhang, Pinpin Sun, Yimao Deng, Xiong Yang, Yanbing Chen, Liangyin |
author_sort | Hu, Xin |
collection | PubMed |
description | Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive adoption of LED lighting and mobile devices. However, most existing studies do not consider the performance bottleneck of Region of Interest (RoI) extraction during decoding, making it challenging to improve communication capacity further. To this end, we propose a fast grid virtual division scheme based on pixel grayscale values, which extracts RoI quickly without sacrificing computational complexity, thereby reducing the decoding delay and improving the communication capacity of OCC. Essentially, the proposed scheme uses a grid division strategy to divide the received image into blocks and randomly sample several pixels within different blocks to quickly locate the RoI with high grayscale values in the original image. By implementing the lightweight RoI extraction algorithm, we experimentally verify its effectiveness in reducing decoding latency, demonstrating its superior performance in terms of communication capacity. The experimental results clearly show that the decoding delay of the proposed scheme is 70% lower than that provided by the Gaussian blur scheme for the iPhone receiver at a transmission frequency of 5 kHz. |
format | Online Article Text |
id | pubmed-9655111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96551112022-11-15 High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division Hu, Xin Zhang, Pinpin Sun, Yimao Deng, Xiong Yang, Yanbing Chen, Liangyin Sensors (Basel) Article Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive adoption of LED lighting and mobile devices. However, most existing studies do not consider the performance bottleneck of Region of Interest (RoI) extraction during decoding, making it challenging to improve communication capacity further. To this end, we propose a fast grid virtual division scheme based on pixel grayscale values, which extracts RoI quickly without sacrificing computational complexity, thereby reducing the decoding delay and improving the communication capacity of OCC. Essentially, the proposed scheme uses a grid division strategy to divide the received image into blocks and randomly sample several pixels within different blocks to quickly locate the RoI with high grayscale values in the original image. By implementing the lightweight RoI extraction algorithm, we experimentally verify its effectiveness in reducing decoding latency, demonstrating its superior performance in terms of communication capacity. The experimental results clearly show that the decoding delay of the proposed scheme is 70% lower than that provided by the Gaussian blur scheme for the iPhone receiver at a transmission frequency of 5 kHz. MDPI 2022-11-01 /pmc/articles/PMC9655111/ /pubmed/36366071 http://dx.doi.org/10.3390/s22218375 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Xin Zhang, Pinpin Sun, Yimao Deng, Xiong Yang, Yanbing Chen, Liangyin High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title | High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title_full | High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title_fullStr | High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title_full_unstemmed | High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title_short | High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division |
title_sort | high-speed extraction of regions of interest in optical camera communication enabled by grid virtual division |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655111/ https://www.ncbi.nlm.nih.gov/pubmed/36366071 http://dx.doi.org/10.3390/s22218375 |
work_keys_str_mv | AT huxin highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision AT zhangpinpin highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision AT sunyimao highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision AT dengxiong highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision AT yangyanbing highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision AT chenliangyin highspeedextractionofregionsofinterestinopticalcameracommunicationenabledbygridvirtualdivision |