Cargando…
Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach
HIGHLIGHTS: We reviewed soft-computing and statistical learning methods for predicting type 2 diabetes mellitus. We searched for papers published between 2010 and 2021 on three academic search engines, obtaining 34 relevant documents for the final meta-analysis. We analyzed the data extracted, compa...
Autores principales: | Olusanya, Micheal O., Ogunsakin, Ropo Ebenezer, Ghai, Meenu, Adeleke, Matthew Adekunle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655196/ https://www.ncbi.nlm.nih.gov/pubmed/36361161 http://dx.doi.org/10.3390/ijerph192114280 |
Ejemplares similares
-
A Forty-Year Analysis of the Literature on Babesia Infection (1982–2022): A Systematic Bibliometric Approach
por: Malgwi, Samson Anjikwi, et al.
Publicado: (2023) -
Meta-analysis of studies on depression prevalence among diabetes mellitus patients in Africa
por: Ogunsakin, Ropo Ebenezer, et al.
Publicado: (2021) -
Bayesian Inference on Malignant Breast Cancer in Nigeria: A Diagnosis of MCMC Convergence
por: Ogunsakin, Ropo Ebenezer, et al.
Publicado: (2017) -
Bayesian Generalized Linear Mixed Modeling of Breast Cancer
por: ROPO EBENEZER, Ogunsakin, et al.
Publicado: (2019) -
A Multilevel Analysis of the Associated and Determining Factors of TB among Adults in South Africa: Results from National Income Dynamics Surveys 2008 to 2017
por: Dhlakama, Hilda, et al.
Publicado: (2022)