Cargando…

Synthesis, Structure and Molecular Docking of New 4,5-Dihydrothiazole Derivatives Based on 3,5-Dimethylpyrazole and Cytisine and Salsoline Alkaloids

The interaction results of 1,2-dibromo-3-isothiocyanatopropane with some pyrazoles as well as cytisine and salsoline alkaloids were presented in this paper. It was shown that the reaction resulted in one one-step and rather mild method for the preparation of the corresponding 1,3-thiazoline bromomet...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibrayev, Marat K., Nurkenov, Oralgazy A., Rakhimberlinova, Zhanar B., Takibayeva, Altynaray T., Palamarchuk, Irina V., Turdybekov, Dastan M., Kelmyalene, Assel A., Kulakov, Ivan V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655236/
https://www.ncbi.nlm.nih.gov/pubmed/36364423
http://dx.doi.org/10.3390/molecules27217598
Descripción
Sumario:The interaction results of 1,2-dibromo-3-isothiocyanatopropane with some pyrazoles as well as cytisine and salsoline alkaloids were presented in this paper. It was shown that the reaction resulted in one one-step and rather mild method for the preparation of the corresponding 1,3-thiazoline bromomethyl derivatives. The yield of this reaction was affected by the presence of a base and an order in which reagents were added. Molecular docking of the synthesized 1,3-thiazoline derivatives for putative antibacterial activity was carried out using the penicillin-binding target protein (PBP4) of the bacteria E. coli “Homo sapiens” and S. aureus “Homo sapiens” as an example. Molecular docking demonstrated that the compounds had insignificant binding energies at the level of selected reference drugs (Cephalotin and Chloramphenicol). The presence of natural alkaloids in the structure of thiazoline derivatives somewhat increased the affinity of these substrates for target proteins selected.