Cargando…
Brain Age Prediction/Classification through Recurrent Deep Learning with Electroencephalogram Recordings of Seizure Subjects
With modern population growth and an increase in the average lifespan, more patients are becoming afflicted with neurodegenerative diseases such as dementia and Alzheimer’s. Patients with a history of epilepsy, drug abuse, and mental health disorders such as depression have a larger risk of developi...
Autores principales: | Jusseaume, Kameron, Valova, Iren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655329/ https://www.ncbi.nlm.nih.gov/pubmed/36365809 http://dx.doi.org/10.3390/s22218112 |
Ejemplares similares
-
Electroencephalogram-Based Subject Matching Learning (ESML): A Deep Learning Framework on Electroencephalogram-Based Biometrics and Task Identification
por: Xu, Jin, et al.
Publicado: (2023) -
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022) -
Electroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm
por: Nanthini, B. Suguna, et al.
Publicado: (2017) -
Clinical characteristics and electroencephalogram analysis of levetiracetam in the treatment of children with febrile seizure recurrence
por: Li, Xue-Chao, et al.
Publicado: (2017) -
Novel quantitative electroencephalogram feature image adapted for deep learning: Verification through classification of Alzheimer’s disease dementia
por: Jeong, Taegyun, et al.
Publicado: (2022)