Cargando…
A Damage Detection Approach for Axially Loaded Beam-like Structures Based on Gaussian Mixture Model
Axially loaded beam-like structures represent a challenging case study for unsupervised learning vibration-based damage detection. Under real environmental and operational conditions, changes in axial load cause changes in the characteristics of the dynamic response that are significantly greater th...
Autores principales: | Lucà, Francescantonio, Manzoni, Stefano, Cerutti, Francesco, Cigada, Alfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655330/ https://www.ncbi.nlm.nih.gov/pubmed/36366033 http://dx.doi.org/10.3390/s22218336 |
Ejemplares similares
-
Automatic Detection of Real Damage in Operating Tie-Rods
por: Lucà, Francescantonio, et al.
Publicado: (2022) -
Short-Training Damage Detection Method for Axially Loaded Beams Subject to Seasonal Thermal Variations
por: Berardengo, Marta, et al.
Publicado: (2023) -
Combined Use of Cointegration Analysis and Robust Outlier Statistics to Improve Damage Detection in Real-World Structures
por: Turrisi, Simone, et al.
Publicado: (2022) -
Spike sorting with Gaussian mixture models
por: Souza, Bryan C., et al.
Publicado: (2019) -
Gaussian mixture modeling of acceleration-derived signal for monitoring external physical load of tennis player
por: Marutani, Yoshihiro, et al.
Publicado: (2023)