Cargando…
Application of Deep Convolutional Neural Networks in the Diagnosis of Osteoporosis
The aim of this study was to assess the possibility of using deep convolutional neural networks (DCNNs) to develop an effective method for diagnosing osteoporosis based on CT images of the spine. The research material included the CT images of L1 spongy tissue belonging to 100 patients (50 healthy a...
Autores principales: | Dzierżak, Róża, Omiotek, Zbigniew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655338/ https://www.ncbi.nlm.nih.gov/pubmed/36365886 http://dx.doi.org/10.3390/s22218189 |
Ejemplares similares
-
A Novel COVID-19 Diagnosis Approach Utilizing a Comprehensive Set of Diagnostic Information (CSDI)
por: Zhunissova, Ulzhalgas, et al.
Publicado: (2023) -
Comparison of the Classification Results Accuracy for CT Soft Tissue and Bone Reconstructions in Detecting the Porosity of a Spongy Tissue
por: Dzierżak, Róża, et al.
Publicado: (2022) -
Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage
por: Wang, Binbin, et al.
Publicado: (2018) -
A deep convolutional neural network for Kawasaki disease diagnosis
por: Xu, Ellen, et al.
Publicado: (2022) -
Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs
por: Lee, Ki-Sun, et al.
Publicado: (2020)