Cargando…
MEAHNE: miRNA–Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
Correct prediction of potential miRNA–disease pairs can considerably accelerate the experimental process in biomedical research. However, many methods cannot effectively learn the complex information contained in multisource data, limiting the performance of the prediction model. A heterogeneous net...
Autores principales: | Huang, Chen, Cen, Keliang, Zhang, Yang, Liu, Bo, Wang, Yadong, Li, Junyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655430/ https://www.ncbi.nlm.nih.gov/pubmed/36295013 http://dx.doi.org/10.3390/life12101578 |
Ejemplares similares
-
PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis
por: Li, Junyi, et al.
Publicado: (2020) -
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
TLNPMD: Prediction of miRNA-Disease Associations Based on miRNA-Drug-Disease Three-Layer Heterogeneous Network
por: Yang, Yi, et al.
Publicado: (2022) -
Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
por: Ji, Cunmei, et al.
Publicado: (2021) -
Factor graph-aggregated heterogeneous network embedding for disease-gene association prediction
por: He, Ming, et al.
Publicado: (2021)