Cargando…
Livestock Identification Using Deep Learning for Traceability
Farm livestock identification and welfare assessment using non-invasive digital technology have gained interest in agriculture in the last decade, especially for accurate traceability. This study aimed to develop a face recognition system for dairy farm cows using advanced deep-learning models and c...
Autores principales: | Dac, Hai Ho, Gonzalez Viejo, Claudia, Lipovetzky, Nir, Tongson, Eden, Dunshea, Frank R., Fuentes, Sigfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655446/ https://www.ncbi.nlm.nih.gov/pubmed/36365954 http://dx.doi.org/10.3390/s22218256 |
Ejemplares similares
-
Biometric Physiological Responses from Dairy Cows Measured by Visible Remote Sensing Are Good Predictors of Milk Productivity and Quality through Artificial Intelligence
por: Fuentes, Sigfredo, et al.
Publicado: (2021) -
Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras
por: Fuentes, Sigfredo, et al.
Publicado: (2020) -
Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity
por: Gonzalez Viejo, Claudia, et al.
Publicado: (2021) -
Assessment of Smoke Contamination in Grapevine Berries and Taint in Wines Due to Bushfires Using a Low-Cost E-Nose and an Artificial Intelligence Approach
por: Fuentes, Sigfredo, et al.
Publicado: (2020) -
Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters
por: Fuentes, Sigfredo, et al.
Publicado: (2020)