Cargando…
Synthesis of a New Glycoconjugate with Di-ᴅ-Psicose Anhydride Structure
Demand for healthy diets has led researchers to explore new saccharide as sucrose alternatives. ᴅ-Psicose, the C-3 epimer of ᴅ-fructose, has a similar sweetness intensity to sucrose but contributes fewer calories. This study proposes a disaccharide with a stable structure derived from ᴅ-psicose. The...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655448/ https://www.ncbi.nlm.nih.gov/pubmed/36361617 http://dx.doi.org/10.3390/ijms232112827 |
Sumario: | Demand for healthy diets has led researchers to explore new saccharide as sucrose alternatives. ᴅ-Psicose, the C-3 epimer of ᴅ-fructose, has a similar sweetness intensity to sucrose but contributes fewer calories. This study proposes a disaccharide with a stable structure derived from ᴅ-psicose. The compound with a spiro-tricyclic core was generated at 32% conversion via caramelization of ᴅ-psicose under acidic anhydrous conditions. The compound was identified by high-resolution mass spectrometry and multi-dimensional nuclear magnetic resonance (NMR). The molecular formula was established as C(12)H(20)O(10) from the molecular weight of m/z 324.1055. Twelve signals were observed by the (13)C NMR spectrum. This compound, denoted di-ᴅ-psicose anhydride (DPA), exhibited a lower water solubility (40 g/L) and higher thermal stability (peak temperature = 194.7 °C) than that of ᴅ-psicose (peak temperature = 126.5 °C). The quantitatively evaluated metal ion scavenging ability of DPA was the best in magnesium (average 98.6 ± 1.1%). This synthesis methodology can provide disaccharides with high stability-reducing heavy metals. |
---|