Cargando…

Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation

Photon-based radiotherapy upregulates Notch signaling in cancer, leading to the acquisition of the stem cell phenotype and induction of invasion/migration, which contributes to the development of resistance to therapy. However, the effect of carbon ion radiotherapy (CIRT) on Notch signaling in gliom...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Vivek, Vashishta, Mohit, Kong, Lin, Lu, Jiade J., Wu, Xiaodong, Dwarakanath, Bilikere S., Guha, Chandan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655483/
https://www.ncbi.nlm.nih.gov/pubmed/36359750
http://dx.doi.org/10.3390/cells11213354
_version_ 1784829197067223040
author Kumar, Vivek
Vashishta, Mohit
Kong, Lin
Lu, Jiade J.
Wu, Xiaodong
Dwarakanath, Bilikere S.
Guha, Chandan
author_facet Kumar, Vivek
Vashishta, Mohit
Kong, Lin
Lu, Jiade J.
Wu, Xiaodong
Dwarakanath, Bilikere S.
Guha, Chandan
author_sort Kumar, Vivek
collection PubMed
description Photon-based radiotherapy upregulates Notch signaling in cancer, leading to the acquisition of the stem cell phenotype and induction of invasion/migration, which contributes to the development of resistance to therapy. However, the effect of carbon ion radiotherapy (CIRT) on Notch signaling in glioma and its impact on stemness and migration is not explored yet. Human glioma cell lines (LN229 and U251), stable Notch1 intracellular domain (N1ICD) overexpressing phenotype of LN229 cells, and Notch inhibitor resistant LN229 cells (LN229R) were irradiated with either photon (X-rays) or (carbon ion irradiation) CII, and expressions of Notch signaling components were accessed by RT-PCR, Western blotting, and enzymatic assays and flow cytometry. Spheroid forming ability, cell migration, and clonogenic assay were used to evaluate the effect of modulated Notch signaling by irradiation. Our results show that X-ray irradiation induced the expression of Notch signaling components such as Notch receptors, target genes, and ADAM17 activity, while CII reduced it in glioma cell lines. The differential modulation of ADAM17 activity by CII and X-rays affected the cell surface levels of NOTCH1 and NOTCH2 receptors, as they were reduced by X-ray irradiation but increased in response to CII. Functionally, CII reduced the spheroid formation and migration of glioma cells, possibly by downregulating the N1ICD, as stable overexpression of N1ICD rescued these inhibitory effects of CII. Moreover, LN229R that are less reliant on Notch signaling for their survival showed less response to CII. Therefore, downregulation of Notch signaling resulting in the suppression of stemness and impaired cell migration by CII seen here may reduce tumor regrowth and disease dissemination, in addition to the well-established cytotoxic effects.
format Online
Article
Text
id pubmed-9655483
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96554832022-11-15 Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation Kumar, Vivek Vashishta, Mohit Kong, Lin Lu, Jiade J. Wu, Xiaodong Dwarakanath, Bilikere S. Guha, Chandan Cells Article Photon-based radiotherapy upregulates Notch signaling in cancer, leading to the acquisition of the stem cell phenotype and induction of invasion/migration, which contributes to the development of resistance to therapy. However, the effect of carbon ion radiotherapy (CIRT) on Notch signaling in glioma and its impact on stemness and migration is not explored yet. Human glioma cell lines (LN229 and U251), stable Notch1 intracellular domain (N1ICD) overexpressing phenotype of LN229 cells, and Notch inhibitor resistant LN229 cells (LN229R) were irradiated with either photon (X-rays) or (carbon ion irradiation) CII, and expressions of Notch signaling components were accessed by RT-PCR, Western blotting, and enzymatic assays and flow cytometry. Spheroid forming ability, cell migration, and clonogenic assay were used to evaluate the effect of modulated Notch signaling by irradiation. Our results show that X-ray irradiation induced the expression of Notch signaling components such as Notch receptors, target genes, and ADAM17 activity, while CII reduced it in glioma cell lines. The differential modulation of ADAM17 activity by CII and X-rays affected the cell surface levels of NOTCH1 and NOTCH2 receptors, as they were reduced by X-ray irradiation but increased in response to CII. Functionally, CII reduced the spheroid formation and migration of glioma cells, possibly by downregulating the N1ICD, as stable overexpression of N1ICD rescued these inhibitory effects of CII. Moreover, LN229R that are less reliant on Notch signaling for their survival showed less response to CII. Therefore, downregulation of Notch signaling resulting in the suppression of stemness and impaired cell migration by CII seen here may reduce tumor regrowth and disease dissemination, in addition to the well-established cytotoxic effects. MDPI 2022-10-24 /pmc/articles/PMC9655483/ /pubmed/36359750 http://dx.doi.org/10.3390/cells11213354 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kumar, Vivek
Vashishta, Mohit
Kong, Lin
Lu, Jiade J.
Wu, Xiaodong
Dwarakanath, Bilikere S.
Guha, Chandan
Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title_full Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title_fullStr Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title_full_unstemmed Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title_short Carbon Ion Irradiation Downregulates Notch Signaling in Glioma Cell Lines, Impacting Cell Migration and Spheroid Formation
title_sort carbon ion irradiation downregulates notch signaling in glioma cell lines, impacting cell migration and spheroid formation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655483/
https://www.ncbi.nlm.nih.gov/pubmed/36359750
http://dx.doi.org/10.3390/cells11213354
work_keys_str_mv AT kumarvivek carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT vashishtamohit carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT konglin carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT lujiadej carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT wuxiaodong carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT dwarakanathbilikeres carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation
AT guhachandan carbonionirradiationdownregulatesnotchsignalingingliomacelllinesimpactingcellmigrationandspheroidformation