Cargando…
Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles
We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au [Formula: see text] nanoclusters against ab-initio molecular dynami...
Autores principales: | Fronzi, Marco, Amos, Roger D., Kobayashi, Rika, Matsumura, Naoki, Watanabe, Kenta, Morizawa, Rafael K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655512/ https://www.ncbi.nlm.nih.gov/pubmed/36364667 http://dx.doi.org/10.3390/nano12213891 |
Ejemplares similares
-
Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles—Transferability towards Bulk
por: Fronzi, Marco, et al.
Publicado: (2023) -
Machine Learning
Interatomic Potentials and Long-Range
Physics
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Interatomic potentials
por: Torrens, Iam
Publicado: (1972) -
Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials
por: Chen, Benjamin W. J., et al.
Publicado: (2023) -
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023)