Cargando…
Fault Detection in Induction Motor Using Time Domain and Spectral Imaging-Based Transfer Learning Approach on Vibration Data
The induction motor plays a vital role in industrial drive systems due to its robustness and easy maintenance but at the same time, it suffers electrical faults, mainly rotor faults such as broken rotor bars. Early shortcoming identification is needed to lessen support expenses and hinder high costs...
Autores principales: | Misra, Sajal, Kumar, Satish, Sayyad, Sameer, Bongale, Arunkumar, Jadhav, Priya, Kotecha, Ketan, Abraham, Ajith, Gabralla, Lubna Abdelkareim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655596/ https://www.ncbi.nlm.nih.gov/pubmed/36365909 http://dx.doi.org/10.3390/s22218210 |
Ejemplares similares
-
Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time–Frequency-Based Features and Deep Learning Models
por: Sayyad, Sameer, et al.
Publicado: (2023) -
Kids’ Emotion Recognition Using Various Deep-Learning Models with Explainable AI
por: Rathod, Manish, et al.
Publicado: (2022) -
A Low-Cost Multi-Sensor Data Acquisition System for Fault Detection in Fused Deposition Modelling
por: Kumar, Satish, et al.
Publicado: (2022) -
Test Case Prioritization, Selection, and Reduction Using Improved Quantum-Behaved Particle Swarm Optimization
por: Bajaj, Anu, et al.
Publicado: (2022) -
Enhancing the Breast Histopathology Image Analysis for Cancer Detection Using Variational Autoencoder
por: Guleria, Harsh Vardhan, et al.
Publicado: (2023)