Cargando…
A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution
In the study of braking force distribution of trucks, the accurate estimation of the state parameters of the vehicle is very critical. However, during the braking process, the state parameters of the vehicle present a highly nonlinear relationship that is difficult to estimate accurately and that se...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655628/ https://www.ncbi.nlm.nih.gov/pubmed/36366054 http://dx.doi.org/10.3390/s22218358 |
_version_ | 1784829232808984576 |
---|---|
author | Chu, Qunyi Sun, Wen Zhang, Yuanjian |
author_facet | Chu, Qunyi Sun, Wen Zhang, Yuanjian |
author_sort | Chu, Qunyi |
collection | PubMed |
description | In the study of braking force distribution of trucks, the accurate estimation of the state parameters of the vehicle is very critical. However, during the braking process, the state parameters of the vehicle present a highly nonlinear relationship that is difficult to estimate accurately and that seriously affects the accuracy of the braking force distribution strategy. To solve this problem, this paper proposes a machine-learning-based state-parameter estimation method to provide a solid data base for the braking force distribution strategy of the vehicle. Firstly, the actual collected complete vehicle information is processed for data; secondly, random forest is applied for the feature screening of data to reduce the data dimensionality; subsequently, the generalized regression neural network (GRNN) model is trained offline, and the vehicle state parameters are estimated online; the estimated parameters are used to implement the four-wheel braking force distribution strategy; finally, the effectiveness of the method is verified by joint simulation using MATLAB/Simulink and TruckSim. |
format | Online Article Text |
id | pubmed-9655628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96556282022-11-15 A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution Chu, Qunyi Sun, Wen Zhang, Yuanjian Sensors (Basel) Article In the study of braking force distribution of trucks, the accurate estimation of the state parameters of the vehicle is very critical. However, during the braking process, the state parameters of the vehicle present a highly nonlinear relationship that is difficult to estimate accurately and that seriously affects the accuracy of the braking force distribution strategy. To solve this problem, this paper proposes a machine-learning-based state-parameter estimation method to provide a solid data base for the braking force distribution strategy of the vehicle. Firstly, the actual collected complete vehicle information is processed for data; secondly, random forest is applied for the feature screening of data to reduce the data dimensionality; subsequently, the generalized regression neural network (GRNN) model is trained offline, and the vehicle state parameters are estimated online; the estimated parameters are used to implement the four-wheel braking force distribution strategy; finally, the effectiveness of the method is verified by joint simulation using MATLAB/Simulink and TruckSim. MDPI 2022-10-31 /pmc/articles/PMC9655628/ /pubmed/36366054 http://dx.doi.org/10.3390/s22218358 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chu, Qunyi Sun, Wen Zhang, Yuanjian A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title | A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title_full | A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title_fullStr | A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title_full_unstemmed | A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title_short | A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution |
title_sort | data-driven method for the estimation of truck-state parameters and braking force distribution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655628/ https://www.ncbi.nlm.nih.gov/pubmed/36366054 http://dx.doi.org/10.3390/s22218358 |
work_keys_str_mv | AT chuqunyi adatadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution AT sunwen adatadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution AT zhangyuanjian adatadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution AT chuqunyi datadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution AT sunwen datadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution AT zhangyuanjian datadrivenmethodfortheestimationoftruckstateparametersandbrakingforcedistribution |