Cargando…
Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit
Bacillus genetics need more versatile promoters for gene circuit engineering. UP elements are widely distributed in noncoding regions and interact with the α-subunit of RNA polymerase (RNAP). They can be applied as a standard element for synthetic biology. Characterization of the binding motif betwe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655642/ https://www.ncbi.nlm.nih.gov/pubmed/36362266 http://dx.doi.org/10.3390/ijms232113480 |
_version_ | 1784829236395114496 |
---|---|
author | Li, Youran Ma, Xufan Zhang, Liang Ding, Zhongyang Xu, Sha Gu, Zhenghua Shi, Guiyang |
author_facet | Li, Youran Ma, Xufan Zhang, Liang Ding, Zhongyang Xu, Sha Gu, Zhenghua Shi, Guiyang |
author_sort | Li, Youran |
collection | PubMed |
description | Bacillus genetics need more versatile promoters for gene circuit engineering. UP elements are widely distributed in noncoding regions and interact with the α-subunit of RNA polymerase (RNAP). They can be applied as a standard element for synthetic biology. Characterization of the binding motif between UP elements and RNAP may assist with rational and effective engineering. In this study, 11 Bacillus constitutive promoters were screened for strength in Bacillus licheniformis. The motif in UP elements from a strong native promoter, P(Lan), was characterized. The influence of specific sequences on RNAP binding and expression strength was investigated both in vitro and in vivo. It was found that sequences up to 50 base pairs upstream of the consensus motif significantly contributed to α-CTD (the alpha subunit carboxy-terminal domain) association. Meanwhile, two repeats of a proximal subsite were able to more strongly activate the expression (by 8.2-fold) through strengthening interactions between UP elements and RNAP. Based the above molecular basis, a synthetic UP element, UP5-2P, was constructed and applied to nine wild-type promoters. Fluorescence polarization results demonstrated that it had an apparent effect on promoter–α-CTD interactions, and elevated expression strength was observed for all the engineered promoters. The highest improved core promoter, P(acpp), was more strongly activated by 7.4-fold. This work thus develops a novel strategy for Bacillus promoter engineering. |
format | Online Article Text |
id | pubmed-9655642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96556422022-11-15 Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit Li, Youran Ma, Xufan Zhang, Liang Ding, Zhongyang Xu, Sha Gu, Zhenghua Shi, Guiyang Int J Mol Sci Article Bacillus genetics need more versatile promoters for gene circuit engineering. UP elements are widely distributed in noncoding regions and interact with the α-subunit of RNA polymerase (RNAP). They can be applied as a standard element for synthetic biology. Characterization of the binding motif between UP elements and RNAP may assist with rational and effective engineering. In this study, 11 Bacillus constitutive promoters were screened for strength in Bacillus licheniformis. The motif in UP elements from a strong native promoter, P(Lan), was characterized. The influence of specific sequences on RNAP binding and expression strength was investigated both in vitro and in vivo. It was found that sequences up to 50 base pairs upstream of the consensus motif significantly contributed to α-CTD (the alpha subunit carboxy-terminal domain) association. Meanwhile, two repeats of a proximal subsite were able to more strongly activate the expression (by 8.2-fold) through strengthening interactions between UP elements and RNAP. Based the above molecular basis, a synthetic UP element, UP5-2P, was constructed and applied to nine wild-type promoters. Fluorescence polarization results demonstrated that it had an apparent effect on promoter–α-CTD interactions, and elevated expression strength was observed for all the engineered promoters. The highest improved core promoter, P(acpp), was more strongly activated by 7.4-fold. This work thus develops a novel strategy for Bacillus promoter engineering. MDPI 2022-11-03 /pmc/articles/PMC9655642/ /pubmed/36362266 http://dx.doi.org/10.3390/ijms232113480 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Youran Ma, Xufan Zhang, Liang Ding, Zhongyang Xu, Sha Gu, Zhenghua Shi, Guiyang Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title | Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title_full | Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title_fullStr | Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title_full_unstemmed | Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title_short | Engineering of Bacillus Promoters Based on Interacting Motifs between UP Elements and RNA Polymerase (RNAP) α-Subunit |
title_sort | engineering of bacillus promoters based on interacting motifs between up elements and rna polymerase (rnap) α-subunit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655642/ https://www.ncbi.nlm.nih.gov/pubmed/36362266 http://dx.doi.org/10.3390/ijms232113480 |
work_keys_str_mv | AT liyouran engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT maxufan engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT zhangliang engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT dingzhongyang engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT xusha engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT guzhenghua engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit AT shiguiyang engineeringofbacilluspromotersbasedoninteractingmotifsbetweenupelementsandrnapolymerasernapasubunit |