Cargando…
Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis
Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited netwo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655645/ https://www.ncbi.nlm.nih.gov/pubmed/36365957 http://dx.doi.org/10.3390/s22218259 |
_version_ | 1784829237140652032 |
---|---|
author | Kaupp, Lukas Humm, Bernhard Nazemi, Kawa Simons, Stephan |
author_facet | Kaupp, Lukas Humm, Bernhard Nazemi, Kawa Simons, Stephan |
author_sort | Kaupp, Lukas |
collection | PubMed |
description | Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited network capabilities. Limited network capabilities are the reason for a chain of faults introduced via active surveillance during fault diagnosis. These introduced faults may slow down production or lead to an outage of the production line. Here, we present a novel approach to automatically select production-relevant shop floor parameters to decrease the number of surveyed variables and, at the same time, maintain quality in fault diagnosis without overloading the network. We were able to achieve higher throughput, mitigate communication losses and prevent the disruption of factory instructions. Our approach uses an autoencoder ensemble via minority voting to differentiate between normal—always on—variables and production variables that may yield a higher entropy. Our approach has been tested in a production-equal smart factory and was cross-validated by a domain expert. |
format | Online Article Text |
id | pubmed-9655645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96556452022-11-15 Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis Kaupp, Lukas Humm, Bernhard Nazemi, Kawa Simons, Stephan Sensors (Basel) Article Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited network capabilities. Limited network capabilities are the reason for a chain of faults introduced via active surveillance during fault diagnosis. These introduced faults may slow down production or lead to an outage of the production line. Here, we present a novel approach to automatically select production-relevant shop floor parameters to decrease the number of surveyed variables and, at the same time, maintain quality in fault diagnosis without overloading the network. We were able to achieve higher throughput, mitigate communication losses and prevent the disruption of factory instructions. Our approach uses an autoencoder ensemble via minority voting to differentiate between normal—always on—variables and production variables that may yield a higher entropy. Our approach has been tested in a production-equal smart factory and was cross-validated by a domain expert. MDPI 2022-10-28 /pmc/articles/PMC9655645/ /pubmed/36365957 http://dx.doi.org/10.3390/s22218259 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kaupp, Lukas Humm, Bernhard Nazemi, Kawa Simons, Stephan Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title | Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title_full | Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title_fullStr | Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title_full_unstemmed | Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title_short | Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis |
title_sort | autoencoder-ensemble-based unsupervised selection of production-relevant variables for context-aware fault diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655645/ https://www.ncbi.nlm.nih.gov/pubmed/36365957 http://dx.doi.org/10.3390/s22218259 |
work_keys_str_mv | AT kaupplukas autoencoderensemblebasedunsupervisedselectionofproductionrelevantvariablesforcontextawarefaultdiagnosis AT hummbernhard autoencoderensemblebasedunsupervisedselectionofproductionrelevantvariablesforcontextawarefaultdiagnosis AT nazemikawa autoencoderensemblebasedunsupervisedselectionofproductionrelevantvariablesforcontextawarefaultdiagnosis AT simonsstephan autoencoderensemblebasedunsupervisedselectionofproductionrelevantvariablesforcontextawarefaultdiagnosis |