Cargando…
Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis
Smart factories are complex; with the increased complexity of employed cyber-physical systems, the complexity evolves further. Cyber-physical systems produce high amounts of data that are hard to capture and challenging to analyze. Real-time recording of all data is not possible due to limited netwo...
Autores principales: | Kaupp, Lukas, Humm, Bernhard, Nazemi, Kawa, Simons, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655645/ https://www.ncbi.nlm.nih.gov/pubmed/36365957 http://dx.doi.org/10.3390/s22218259 |
Ejemplares similares
-
Fault Handling in Industry 4.0: Definition, Process and Applications
por: Webert, Heiko, et al.
Publicado: (2022) -
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
por: Ye, Qing, et al.
Publicado: (2021) -
Transformer fault diagnosis using continuous sparse autoencoder
por: Wang, Lukun, et al.
Publicado: (2016) -
Unsupervised tagging of semivisible jets with normalized autoencoders in CMS
por: Eble, Florian
Publicado: (2023) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022)