Cargando…
Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry
Modulation instability (MI) is the main limitation factor of the maximum optical power in long-haul phase-sensitive optical time domain reflectometry (Φ-OTDR), and induces signal fading and serious phase noise. In this paper, a method of coherent seed injection is proposed to suppress the MI-induced...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655662/ https://www.ncbi.nlm.nih.gov/pubmed/36365887 http://dx.doi.org/10.3390/s22218190 |
Sumario: | Modulation instability (MI) is the main limitation factor of the maximum optical power in long-haul phase-sensitive optical time domain reflectometry (Φ-OTDR), and induces signal fading and serious phase noise. In this paper, a method of coherent seed injection is proposed to suppress the MI-induced phase noise in long-haul Φ-OTDR. The spontaneous MI is suppressed by stimulating induced MI in an optical fiber. The visibility of the signal in Φ-OTDR is enhanced and the phase noise is suppressed significantly. This paper offers an effective method to increase the maximum input power with the MI-induced phase noise suppressed in the long-haul Φ-OTDR system. As a result, the maximum input power and sensing distance can be potentially increased, which is greatly beneficial to the enhancement of the performance of long-haul Φ-OTDR. |
---|