Cargando…

Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry

Modulation instability (MI) is the main limitation factor of the maximum optical power in long-haul phase-sensitive optical time domain reflectometry (Φ-OTDR), and induces signal fading and serious phase noise. In this paper, a method of coherent seed injection is proposed to suppress the MI-induced...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yichi, Zhu, Qi, Lu, Yang, Meng, Zhou, Hu, Xiaoyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655662/
https://www.ncbi.nlm.nih.gov/pubmed/36365887
http://dx.doi.org/10.3390/s22218190
Descripción
Sumario:Modulation instability (MI) is the main limitation factor of the maximum optical power in long-haul phase-sensitive optical time domain reflectometry (Φ-OTDR), and induces signal fading and serious phase noise. In this paper, a method of coherent seed injection is proposed to suppress the MI-induced phase noise in long-haul Φ-OTDR. The spontaneous MI is suppressed by stimulating induced MI in an optical fiber. The visibility of the signal in Φ-OTDR is enhanced and the phase noise is suppressed significantly. This paper offers an effective method to increase the maximum input power with the MI-induced phase noise suppressed in the long-haul Φ-OTDR system. As a result, the maximum input power and sensing distance can be potentially increased, which is greatly beneficial to the enhancement of the performance of long-haul Φ-OTDR.