Cargando…
Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager
Sea ice is an important marine phenomenon in the Arctic region, and it is of great importance to study the motion of Arctic sea ice in the present day when its melting is accelerated by global warming. This study proposes a method to retrieve the motion of sea ice based on the maximum cross-correlat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655684/ https://www.ncbi.nlm.nih.gov/pubmed/36365995 http://dx.doi.org/10.3390/s22218298 |
_version_ | 1784829246626070528 |
---|---|
author | Ni, Kun Chen, Haihua Li, Lele Meng, Xin |
author_facet | Ni, Kun Chen, Haihua Li, Lele Meng, Xin |
author_sort | Ni, Kun |
collection | PubMed |
description | Sea ice is an important marine phenomenon in the Arctic region, and it is of great importance to study the motion of Arctic sea ice in the present day when its melting is accelerated by global warming. This study proposes a method to retrieve the motion of sea ice based on the maximum cross-correlation (MCC) and the successive correction method (SCM). The proposed method can apply different scales of search ranges to template matching according to the location of sea ice in the Arctic area. In addition, the data assimilation method can assign different weights to different data. We used 36.5 GHz and 89 GHz brightness temperature (T(b)) data from the microwave radiometer imager (MWRI) aboard the Fengyun-3D (FY-3D) satellite, for the first time in the literature, to retrieve the sea ice motion in the Beaufort Sea from January to April 2019. The retrieved sea ice motion results were in good agreement with those obtained from the motion of the buoys. Compared with the data from the buoys, the root mean-squared error (RMSE) of the sea ice motion retrieved from FY-3D/MWRI [Formula: see text] data was 1.1418 cm/s in the zonal direction and 1.0481 cm/s in the meridional direction, and the mean absolute error (MAE) between them was 0.7166 cm/s in the zonal direction and 0.6777 cm/s in the meridional direction. The RMSE between the sea ice motion obtained from the National Snow and Ice Data Center (NSIDC) and the motion of the buoys was 0.9515 cm/s in the zonal direction and 0.67003 cm/s in the meridional direction, and the MAE between them was 0.6576 cm/s in the zonal direction and 0.4922 cm/s in the meridional direction. The [Formula: see text] of daily average velocity from the FY-3D/MWRI results and NSIDC data product was 2.2726 cm/s in zonal and 1.9270 cm/s in meridional, and the MAE was 1.5103 cm/s in zonal and 1.1071 cm/s in zonal. The density of the merged data was higher than that obtained from a single polarization or frequency in this paper. The results indicate that FY-3D/MWRI T(b) data can retrieve the sea ice motion successfully. |
format | Online Article Text |
id | pubmed-9655684 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96556842022-11-15 Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager Ni, Kun Chen, Haihua Li, Lele Meng, Xin Sensors (Basel) Article Sea ice is an important marine phenomenon in the Arctic region, and it is of great importance to study the motion of Arctic sea ice in the present day when its melting is accelerated by global warming. This study proposes a method to retrieve the motion of sea ice based on the maximum cross-correlation (MCC) and the successive correction method (SCM). The proposed method can apply different scales of search ranges to template matching according to the location of sea ice in the Arctic area. In addition, the data assimilation method can assign different weights to different data. We used 36.5 GHz and 89 GHz brightness temperature (T(b)) data from the microwave radiometer imager (MWRI) aboard the Fengyun-3D (FY-3D) satellite, for the first time in the literature, to retrieve the sea ice motion in the Beaufort Sea from January to April 2019. The retrieved sea ice motion results were in good agreement with those obtained from the motion of the buoys. Compared with the data from the buoys, the root mean-squared error (RMSE) of the sea ice motion retrieved from FY-3D/MWRI [Formula: see text] data was 1.1418 cm/s in the zonal direction and 1.0481 cm/s in the meridional direction, and the mean absolute error (MAE) between them was 0.7166 cm/s in the zonal direction and 0.6777 cm/s in the meridional direction. The RMSE between the sea ice motion obtained from the National Snow and Ice Data Center (NSIDC) and the motion of the buoys was 0.9515 cm/s in the zonal direction and 0.67003 cm/s in the meridional direction, and the MAE between them was 0.6576 cm/s in the zonal direction and 0.4922 cm/s in the meridional direction. The [Formula: see text] of daily average velocity from the FY-3D/MWRI results and NSIDC data product was 2.2726 cm/s in zonal and 1.9270 cm/s in meridional, and the MAE was 1.5103 cm/s in zonal and 1.1071 cm/s in zonal. The density of the merged data was higher than that obtained from a single polarization or frequency in this paper. The results indicate that FY-3D/MWRI T(b) data can retrieve the sea ice motion successfully. MDPI 2022-10-29 /pmc/articles/PMC9655684/ /pubmed/36365995 http://dx.doi.org/10.3390/s22218298 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ni, Kun Chen, Haihua Li, Lele Meng, Xin Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title | Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title_full | Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title_fullStr | Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title_full_unstemmed | Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title_short | Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager |
title_sort | retrieving the motion of beaufort sea ice using brightness temperature data from fy-3d microwave radiometer imager |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655684/ https://www.ncbi.nlm.nih.gov/pubmed/36365995 http://dx.doi.org/10.3390/s22218298 |
work_keys_str_mv | AT nikun retrievingthemotionofbeaufortseaiceusingbrightnesstemperaturedatafromfy3dmicrowaveradiometerimager AT chenhaihua retrievingthemotionofbeaufortseaiceusingbrightnesstemperaturedatafromfy3dmicrowaveradiometerimager AT lilele retrievingthemotionofbeaufortseaiceusingbrightnesstemperaturedatafromfy3dmicrowaveradiometerimager AT mengxin retrievingthemotionofbeaufortseaiceusingbrightnesstemperaturedatafromfy3dmicrowaveradiometerimager |