Cargando…
A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China
To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019–2021 were used as the study subjects. Logistic regression an...
Autores principales: | Ni, Linghao, Chen, Fengqiong, Ran, Ruihong, Li, Xiaoping, Jin, Nan, Zhang, Huadong, Peng, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655771/ https://www.ncbi.nlm.nih.gov/pubmed/36361178 http://dx.doi.org/10.3390/ijerph192114300 |
Ejemplares similares
-
Electrocardiogram abnormalities in antimony exposed workers in the automotive brake lining manufacturing industry: a case report
por: Jo, Ha-ram, et al.
Publicado: (2022) -
The world automotive components industry : a review of leading manufacturers and trends
por: Sleigh, Paul A. C.
Publicado: (1996) -
Additive manufacturing process selection for automotive industry using Pythagorean fuzzy CRITIC EDAS
por: Menekse, Akin, et al.
Publicado: (2023) -
Relationship of Occupational and Non-Occupational Stress with Smoking in Automotive Industry Workers
por: Hassani, Somayeh, et al.
Publicado: (2014) -
Effect of Chronic Noise Exposure on Aggressive Behavior of Automotive Industry Workers
por: Alimohammadi, Iraj, et al.
Publicado: (2018)