Cargando…
Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.)
Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656017/ https://www.ncbi.nlm.nih.gov/pubmed/36365263 http://dx.doi.org/10.3390/plants11212811 |
_version_ | 1784829329026318336 |
---|---|
author | Shurygin, Boris Konyukhov, Ivan Khruschev, Sergei Solovchenko, Alexei |
author_facet | Shurygin, Boris Konyukhov, Ivan Khruschev, Sergei Solovchenko, Alexei |
author_sort | Shurygin, Boris |
collection | PubMed |
description | Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations. |
format | Online Article Text |
id | pubmed-9656017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96560172022-11-15 Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) Shurygin, Boris Konyukhov, Ivan Khruschev, Sergei Solovchenko, Alexei Plants (Basel) Article Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations. MDPI 2022-10-22 /pmc/articles/PMC9656017/ /pubmed/36365263 http://dx.doi.org/10.3390/plants11212811 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shurygin, Boris Konyukhov, Ivan Khruschev, Sergei Solovchenko, Alexei Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title | Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title_full | Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title_fullStr | Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title_full_unstemmed | Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title_short | Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.) |
title_sort | non-invasive probing of winter dormancy via time-frequency analysis of induced chlorophyll fluorescence in deciduous plants as exemplified by apple (malus × domestica borkh.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656017/ https://www.ncbi.nlm.nih.gov/pubmed/36365263 http://dx.doi.org/10.3390/plants11212811 |
work_keys_str_mv | AT shuryginboris noninvasiveprobingofwinterdormancyviatimefrequencyanalysisofinducedchlorophyllfluorescenceindeciduousplantsasexemplifiedbyapplemalusdomesticaborkh AT konyukhovivan noninvasiveprobingofwinterdormancyviatimefrequencyanalysisofinducedchlorophyllfluorescenceindeciduousplantsasexemplifiedbyapplemalusdomesticaborkh AT khruschevsergei noninvasiveprobingofwinterdormancyviatimefrequencyanalysisofinducedchlorophyllfluorescenceindeciduousplantsasexemplifiedbyapplemalusdomesticaborkh AT solovchenkoalexei noninvasiveprobingofwinterdormancyviatimefrequencyanalysisofinducedchlorophyllfluorescenceindeciduousplantsasexemplifiedbyapplemalusdomesticaborkh |