Cargando…

Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model

PI-RADS 3 prostate lesions clinical management is still debated, with high variability among different centers. Identifying clinically significant tumors among PI-RADS 3 is crucial. Radiomics applied to multiparametric MR (mpMR) seems promising. Nevertheless, reproducibility assessment by external v...

Descripción completa

Detalles Bibliográficos
Autores principales: Corsi, Andrea, De Bernardi, Elisabetta, Bonaffini, Pietro Andrea, Franco, Paolo Niccolò, Nicoletta, Dario, Simonini, Roberto, Ippolito, Davide, Perugini, Giovanna, Occhipinti, Mariaelena, Da Pozzo, Luigi Filippo, Roscigno, Marco, Sironi, Sandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656103/
https://www.ncbi.nlm.nih.gov/pubmed/36362530
http://dx.doi.org/10.3390/jcm11216304
_version_ 1784829350558826496
author Corsi, Andrea
De Bernardi, Elisabetta
Bonaffini, Pietro Andrea
Franco, Paolo Niccolò
Nicoletta, Dario
Simonini, Roberto
Ippolito, Davide
Perugini, Giovanna
Occhipinti, Mariaelena
Da Pozzo, Luigi Filippo
Roscigno, Marco
Sironi, Sandro
author_facet Corsi, Andrea
De Bernardi, Elisabetta
Bonaffini, Pietro Andrea
Franco, Paolo Niccolò
Nicoletta, Dario
Simonini, Roberto
Ippolito, Davide
Perugini, Giovanna
Occhipinti, Mariaelena
Da Pozzo, Luigi Filippo
Roscigno, Marco
Sironi, Sandro
author_sort Corsi, Andrea
collection PubMed
description PI-RADS 3 prostate lesions clinical management is still debated, with high variability among different centers. Identifying clinically significant tumors among PI-RADS 3 is crucial. Radiomics applied to multiparametric MR (mpMR) seems promising. Nevertheless, reproducibility assessment by external validation is required. We retrospectively included all patients with at least one PI-RADS 3 lesion (PI-RADS v2.1) detected on a 3T prostate MRI scan at our Institution (June 2016–March 2021). An MRI-targeted biopsy was used as ground truth. We assessed reproducible mpMRI radiomic features found in the literature. Then, we proposed a new model combining PSA density and two radiomic features (texture regularity (T2) and size zone heterogeneity (ADC)). All models were trained/assessed through 100-repetitions 5-fold cross-validation. Eighty patients were included (26 with GS ≥ 7). In total, 9/20 T2 features (Hector’s model) and 1 T2 feature (Jin’s model) significantly correlated to biopsy on our dataset. PSA density alone predicted clinically significant tumors (sensitivity: 66%; specificity: 71%). Our model obtained a sensitivity of 80% and a specificity of 76%. Standard-compliant works with detailed methodologies achieve comparable radiomic feature sets. Therefore, efforts to facilitate reproducibility are needed, while complex models and imaging protocols seem not, since our model combining PSA density and two radiomic features from routinely performed sequences appeared to differentiate clinically significant cancers.
format Online
Article
Text
id pubmed-9656103
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96561032022-11-15 Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model Corsi, Andrea De Bernardi, Elisabetta Bonaffini, Pietro Andrea Franco, Paolo Niccolò Nicoletta, Dario Simonini, Roberto Ippolito, Davide Perugini, Giovanna Occhipinti, Mariaelena Da Pozzo, Luigi Filippo Roscigno, Marco Sironi, Sandro J Clin Med Article PI-RADS 3 prostate lesions clinical management is still debated, with high variability among different centers. Identifying clinically significant tumors among PI-RADS 3 is crucial. Radiomics applied to multiparametric MR (mpMR) seems promising. Nevertheless, reproducibility assessment by external validation is required. We retrospectively included all patients with at least one PI-RADS 3 lesion (PI-RADS v2.1) detected on a 3T prostate MRI scan at our Institution (June 2016–March 2021). An MRI-targeted biopsy was used as ground truth. We assessed reproducible mpMRI radiomic features found in the literature. Then, we proposed a new model combining PSA density and two radiomic features (texture regularity (T2) and size zone heterogeneity (ADC)). All models were trained/assessed through 100-repetitions 5-fold cross-validation. Eighty patients were included (26 with GS ≥ 7). In total, 9/20 T2 features (Hector’s model) and 1 T2 feature (Jin’s model) significantly correlated to biopsy on our dataset. PSA density alone predicted clinically significant tumors (sensitivity: 66%; specificity: 71%). Our model obtained a sensitivity of 80% and a specificity of 76%. Standard-compliant works with detailed methodologies achieve comparable radiomic feature sets. Therefore, efforts to facilitate reproducibility are needed, while complex models and imaging protocols seem not, since our model combining PSA density and two radiomic features from routinely performed sequences appeared to differentiate clinically significant cancers. MDPI 2022-10-26 /pmc/articles/PMC9656103/ /pubmed/36362530 http://dx.doi.org/10.3390/jcm11216304 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Corsi, Andrea
De Bernardi, Elisabetta
Bonaffini, Pietro Andrea
Franco, Paolo Niccolò
Nicoletta, Dario
Simonini, Roberto
Ippolito, Davide
Perugini, Giovanna
Occhipinti, Mariaelena
Da Pozzo, Luigi Filippo
Roscigno, Marco
Sironi, Sandro
Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title_full Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title_fullStr Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title_full_unstemmed Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title_short Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model
title_sort radiomics in pi-rads 3 multiparametric mri for prostate cancer identification: literature models re-implementation and proposal of a clinical–radiological model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656103/
https://www.ncbi.nlm.nih.gov/pubmed/36362530
http://dx.doi.org/10.3390/jcm11216304
work_keys_str_mv AT corsiandrea radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT debernardielisabetta radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT bonaffinipietroandrea radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT francopaoloniccolo radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT nicolettadario radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT simoniniroberto radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT ippolitodavide radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT peruginigiovanna radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT occhipintimariaelena radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT dapozzoluigifilippo radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT roscignomarco radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel
AT sironisandro radiomicsinpirads3multiparametricmriforprostatecanceridentificationliteraturemodelsreimplementationandproposalofaclinicalradiologicalmodel