Cargando…
Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition
Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the g...
Autores principales: | Xefteris, Vasileios-Rafail, Tsanousa, Athina, Georgakopoulou, Nefeli, Diplaris, Sotiris, Vrochidis, Stefanos, Kompatsiaris, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656224/ https://www.ncbi.nlm.nih.gov/pubmed/36365896 http://dx.doi.org/10.3390/s22218198 |
Ejemplares similares
-
Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection
por: Kosti, Makrina Viola, et al.
Publicado: (2023) -
Combining RSSI and Accelerometer Features for Room-Level Localization
por: Tsanousa, Athina, et al.
Publicado: (2021) -
Multi-Sensors for Human Activity Recognition
por: Tsanousa, Athina, et al.
Publicado: (2023) -
A Review of Multisensor Data Fusion Solutions in Smart Manufacturing: Systems and Trends
por: Tsanousa, Athina, et al.
Publicado: (2022) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023)