Cargando…
Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete
This research examined machine learning (ML) techniques for predicting the compressive strength (CS) of self-compacting concrete (SCC). Multilayer perceptron (MLP), bagging regressor (BR), and support vector machine (SVM) were utilized for analysis. A total of 169 data points were retrieved from the...
Autores principales: | Amin, Muhammad Nasir, Al-Hashem, Mohammed Najeeb, Ahmad, Ayaz, Khan, Kaffayatullah, Ahmad, Waqas, Qadir, Muhammad Ghulam, Imran, Muhammad, Al-Ahmad, Qasem M. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656225/ https://www.ncbi.nlm.nih.gov/pubmed/36363391 http://dx.doi.org/10.3390/ma15217800 |
Ejemplares similares
-
Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete
por: Al-Hashem, Mohammed Najeeb, et al.
Publicado: (2022) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Forecasting Compressive Strength of RHA Based Concrete Using Multi-Expression Programming
por: Amin, Muhammad Nasir, et al.
Publicado: (2022)