Cargando…
Video Super-Resolution Method Using Deformable Convolution-Based Alignment Network
With the advancement of sensors, image and video processing have developed for use in the visual sensing area. Among them, video super-resolution (VSR) aims to reconstruct high-resolution sequences from low-resolution sequences. To use consecutive contexts within a low-resolution sequence, VSR learn...
Autores principales: | Lee, Yooho, Cho, Sukhee, Jun, Dongsan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656337/ https://www.ncbi.nlm.nih.gov/pubmed/36366175 http://dx.doi.org/10.3390/s22218476 |
Ejemplares similares
-
Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network
por: Lee, Yooho, et al.
Publicado: (2021) -
Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI
Publicado: (2021) -
Lightweight Super-Resolution with Self-Calibrated Convolution for Panoramic Videos
por: Shang, Fanjie, et al.
Publicado: (2022) -
Deformed alignment of super-resolution images for semi-flexible structures
por: Shi, Xiaoyu, et al.
Publicado: (2019) -
Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network
por: Xiao, Aoran, et al.
Publicado: (2018)