Cargando…
Multi-Task Learning-Based Deep Neural Network for Steady-State Visual Evoked Potential-Based Brain–Computer Interfaces
Amyotrophic lateral sclerosis (ALS) causes people to have difficulty communicating with others or devices. In this paper, multi-task learning with denoising and classification tasks is used to develop a robust steady-state visual evoked potential-based brain–computer interface (SSVEP-based BCI), whi...
Autores principales: | Chuang, Chia-Chun, Lee, Chien-Ching, So, Edmund-Cheung, Yeng, Chia-Hong, Chen, Yeou-Jiunn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656443/ https://www.ncbi.nlm.nih.gov/pubmed/36366001 http://dx.doi.org/10.3390/s22218303 |
Ejemplares similares
-
Design of Wearable Headset with Steady State Visually Evoked Potential-Based Brain Computer Interface
por: Lin, Bor-Shyh, et al.
Publicado: (2019) -
EEG data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (BCI) development
por: Fernandez-Fraga, S.M., et al.
Publicado: (2019) -
Effects of Distracting Task with Different Mental Workload on Steady-State Visual Evoked Potential Based Brain Computer Interfaces—an Offline Study
por: Zhao, Yawei, et al.
Publicado: (2018) -
Towards an Optimization of Stimulus Parameters for Brain-Computer Interfaces Based on Steady State Visual Evoked Potentials
por: Duszyk, Anna, et al.
Publicado: (2014) -
Highly Interactive Brain–Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential
por: Han, Chengcheng, et al.
Publicado: (2018)