Cargando…
MixNN: A Design for Protecting Deep Learning Models
In this paper, we propose a novel design, called MixNN, for protecting deep learning model structure and parameters since the model consists of several layers and each layer contains its own structure and parameters. The layers in a deep learning model of MixNN are fully decentralized. It hides comm...
Autores principales: | Liu, Chao, Chen, Hao, Wu, Yusen, Jin, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656547/ https://www.ncbi.nlm.nih.gov/pubmed/36365952 http://dx.doi.org/10.3390/s22218254 |
Ejemplares similares
-
nn-TransUNet: An Automatic Deep Learning Pipeline for Heart MRI Segmentation
por: Zhao, Li, et al.
Publicado: (2022) -
PTPD: predicting therapeutic peptides by deep learning and word2vec
por: Wu, Chuanyan, et al.
Publicado: (2019) -
BraggNN: fast X-ray Bragg peak analysis using deep learning
por: Liu, Zhengchun, et al.
Publicado: (2021) -
Design of Deep Learning Model for Task-Evoked fMRI Data Classification
por: Huang, Xiaojie, et al.
Publicado: (2021) -
Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples
por: Xu, Yong-li, et al.
Publicado: (2019)