Cargando…
Explainable Preoperative Automated Machine Learning Prediction Model for Cardiac Surgery-Associated Acute Kidney Injury
Background: We aimed to develop and validate an automated machine learning (autoML) prediction model for cardiac surgery-associated acute kidney injury (CSA-AKI). Methods: Using 69 preoperative variables, we developed several models to predict post-operative AKI in adult patients undergoing cardiac...
Autores principales: | Thongprayoon, Charat, Pattharanitima, Pattharawin, Kattah, Andrea G., Mao, Michael A., Keddis, Mira T., Dillon, John J., Kaewput, Wisit, Tangpanithandee, Supawit, Krisanapan, Pajaree, Qureshi, Fawad, Cheungpasitporn, Wisit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656700/ https://www.ncbi.nlm.nih.gov/pubmed/36362493 http://dx.doi.org/10.3390/jcm11216264 |
Ejemplares similares
-
Revolutionizing Chronic Kidney Disease Management with Machine Learning and Artificial Intelligence
por: Krisanapan, Pajaree, et al.
Publicado: (2023) -
Distinct Subtypes of Hepatorenal Syndrome and Associated Outcomes as Identified by Machine Learning Consensus Clustering
por: Tangpanithandee, Supawit, et al.
Publicado: (2023) -
Machine Learning Consensus Clustering of Morbidly Obese Kidney Transplant Recipients in the United States
por: Thongprayoon, Charat, et al.
Publicado: (2022) -
Recent Advances in Understanding of Cardiovascular Diseases in Patients with Chronic Kidney Disease
por: Krisanapan, Pajaree, et al.
Publicado: (2022) -
Clinical Phenotypes of Dual Kidney Transplant Recipients in the United States as Identified through Machine Learning Consensus Clustering
por: Tangpanithandee, Supawit, et al.
Publicado: (2022)