Cargando…

A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations

Establishing the timeframe when a particular virus was circulating in a population could be useful in several areas of biomedical research, including microbiology and legal medicine. Using simulations, we demonstrate that the circulation timeframe of an unknown SARS-CoV-2 genome in a population (her...

Descripción completa

Detalles Bibliográficos
Autores principales: Pardo-Seco, Jacobo, Bello, Xabier, Gómez-Carballa, Alberto, Martinón-Torres, Federico, Muñoz-Barús, José Ignacio, Salas, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656715/
https://www.ncbi.nlm.nih.gov/pubmed/36361690
http://dx.doi.org/10.3390/ijms232112899
_version_ 1784829505836154880
author Pardo-Seco, Jacobo
Bello, Xabier
Gómez-Carballa, Alberto
Martinón-Torres, Federico
Muñoz-Barús, José Ignacio
Salas, Antonio
author_facet Pardo-Seco, Jacobo
Bello, Xabier
Gómez-Carballa, Alberto
Martinón-Torres, Federico
Muñoz-Barús, José Ignacio
Salas, Antonio
author_sort Pardo-Seco, Jacobo
collection PubMed
description Establishing the timeframe when a particular virus was circulating in a population could be useful in several areas of biomedical research, including microbiology and legal medicine. Using simulations, we demonstrate that the circulation timeframe of an unknown SARS-CoV-2 genome in a population (hereafter, estimated time of a queried genome [QG]; t(E-QG)) can be easily predicted using a phylogenetic model based on a robust reference genome database of the virus, and information on their sampling dates. We evaluate several phylogeny-based approaches, including modeling evolutionary (substitution) rates of the SARS-CoV-2 genome (~10(−3) substitutions/nucleotide/year) and the mutational (substitutions) differences separating the QGs from the reference genomes (RGs) in the database. Owing to the mutational characteristics of the virus, the present Viral Molecular Clock Dating (VMCD) method covers timeframes going backwards from about a month in the past. The method has very low errors associated to the t(E-QG) estimates and narrow intervals of t(E-QG), both ranging from a few days to a few weeks regardless of the mathematical model used. The SARS-CoV-2 model represents a proof of concept that can be extrapolated to any other microorganism, provided that a robust genome sequence database is available. Besides obvious applications in epidemiology and microbiology investigations, there are several contexts in forensic casework where estimating t(E-QG) could be useful, including estimation of the postmortem intervals (PMI) and the dating of samples stored in hospital settings.
format Online
Article
Text
id pubmed-9656715
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96567152022-11-15 A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations Pardo-Seco, Jacobo Bello, Xabier Gómez-Carballa, Alberto Martinón-Torres, Federico Muñoz-Barús, José Ignacio Salas, Antonio Int J Mol Sci Article Establishing the timeframe when a particular virus was circulating in a population could be useful in several areas of biomedical research, including microbiology and legal medicine. Using simulations, we demonstrate that the circulation timeframe of an unknown SARS-CoV-2 genome in a population (hereafter, estimated time of a queried genome [QG]; t(E-QG)) can be easily predicted using a phylogenetic model based on a robust reference genome database of the virus, and information on their sampling dates. We evaluate several phylogeny-based approaches, including modeling evolutionary (substitution) rates of the SARS-CoV-2 genome (~10(−3) substitutions/nucleotide/year) and the mutational (substitutions) differences separating the QGs from the reference genomes (RGs) in the database. Owing to the mutational characteristics of the virus, the present Viral Molecular Clock Dating (VMCD) method covers timeframes going backwards from about a month in the past. The method has very low errors associated to the t(E-QG) estimates and narrow intervals of t(E-QG), both ranging from a few days to a few weeks regardless of the mathematical model used. The SARS-CoV-2 model represents a proof of concept that can be extrapolated to any other microorganism, provided that a robust genome sequence database is available. Besides obvious applications in epidemiology and microbiology investigations, there are several contexts in forensic casework where estimating t(E-QG) could be useful, including estimation of the postmortem intervals (PMI) and the dating of samples stored in hospital settings. MDPI 2022-10-25 /pmc/articles/PMC9656715/ /pubmed/36361690 http://dx.doi.org/10.3390/ijms232112899 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pardo-Seco, Jacobo
Bello, Xabier
Gómez-Carballa, Alberto
Martinón-Torres, Federico
Muñoz-Barús, José Ignacio
Salas, Antonio
A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title_full A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title_fullStr A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title_full_unstemmed A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title_short A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations
title_sort timeframe for sars-cov-2 genomes: a proof of concept for postmortem interval estimations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656715/
https://www.ncbi.nlm.nih.gov/pubmed/36361690
http://dx.doi.org/10.3390/ijms232112899
work_keys_str_mv AT pardosecojacobo atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT belloxabier atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT gomezcarballaalberto atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT martinontorresfederico atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT munozbarusjoseignacio atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT salasantonio atimeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT pardosecojacobo timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT belloxabier timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT gomezcarballaalberto timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT martinontorresfederico timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT munozbarusjoseignacio timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations
AT salasantonio timeframeforsarscov2genomesaproofofconceptforpostmortemintervalestimations