Cargando…
Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning
Ride-hailed shared autonomous vehicles (SAV) have emerged recently as an economically feasible way of introducing autonomous driving technologies while serving the mobility needs of under-served communities. There has also been corresponding research work on optimization of the operation of these SA...
Autores principales: | Meneses-Cime, Karina, Aksun Guvenc, Bilin, Guvenc, Levent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656861/ https://www.ncbi.nlm.nih.gov/pubmed/36366014 http://dx.doi.org/10.3390/s22218317 |
Ejemplares similares
-
Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration
por: Cao, Xincheng, et al.
Publicado: (2023) -
V2X Communication between Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs)
por: Kavas-Torris, Ozgenur, et al.
Publicado: (2022) -
Multi-task dispatch of shared autonomous electric vehicles for Mobility-on-Demand services – combination of deep reinforcement learning and combinatorial optimization method
por: Wang, Ning, et al.
Publicado: (2022) -
eHMI: Review and Guidelines for Deployment on Autonomous Vehicles
por: Carmona, Juan, et al.
Publicado: (2021) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021)