Cargando…
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
Federated learning is a type of privacy-preserving, collaborative machine learning. Instead of sharing raw data, the federated learning process cooperatively exchanges the model parameters and aggregates them in a decentralized manner through multiple users. In this study, we designed and implemente...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656904/ https://www.ncbi.nlm.nih.gov/pubmed/36365960 http://dx.doi.org/10.3390/s22218263 |
Sumario: | Federated learning is a type of privacy-preserving, collaborative machine learning. Instead of sharing raw data, the federated learning process cooperatively exchanges the model parameters and aggregates them in a decentralized manner through multiple users. In this study, we designed and implemented a hierarchical blockchain system using a public blockchain for a federated learning process without a trusted curator. This prevents model-poisoning attacks and provides secure updates of a global model. We conducted a comprehensive empirical study to characterize the performance of federated learning in our testbed and identify potential performance bottlenecks, thereby gaining a better understanding of the system. |
---|