Cargando…
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
Federated learning is a type of privacy-preserving, collaborative machine learning. Instead of sharing raw data, the federated learning process cooperatively exchanges the model parameters and aggregates them in a decentralized manner through multiple users. In this study, we designed and implemente...
Autores principales: | Lee, Jungjae, Kim, Wooseong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656904/ https://www.ncbi.nlm.nih.gov/pubmed/36365960 http://dx.doi.org/10.3390/s22218263 |
Ejemplares similares
-
Sharding-Based Proof-of-Stake Blockchain Protocols: Key Components & Probabilistic Security Analysis †
por: Hafid, Abdelatif, et al.
Publicado: (2023) -
Building operation and maintenance scheme based on sharding blockchain
por: Wang, Jinlong, et al.
Publicado: (2023) -
Data storage mechanism of industrial IoT based on LRC sharding blockchain
por: Ren, Yongjun, et al.
Publicado: (2023) -
Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data
por: Seol, Mihye, et al.
Publicado: (2023) -
Cross-Domain Federated Data Modeling on Non-IID Data
por: Chai, Baobao, et al.
Publicado: (2022)