Cargando…
Graph Convolutional Network for 3D Object Pose Estimation in a Point Cloud
Graph Neural Networks (GNNs) are neural networks that learn the representation of nodes and associated edges that connect it to every other node while maintaining graph representation. Graph Convolutional Neural Networks (GCNs), as a representative method in GNNs, in the context of computer vision,...
Autores principales: | Jung, Tae-Won, Jeong, Chi-Seo, Kim, In-Seon, Yu, Min-Su, Kwon, Soon-Chul, Jung, Kye-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656959/ https://www.ncbi.nlm.nih.gov/pubmed/36365864 http://dx.doi.org/10.3390/s22218166 |
Ejemplares similares
-
Coarse-to-Fine Hand–Object Pose Estimation with Interaction-Aware Graph Convolutional Network
por: Zhang, Maomao, et al.
Publicado: (2021) -
From IR Images to Point Clouds to Pose: Point Cloud-Based AR Glasses Pose Estimation
por: Firintepe, Ahmet, et al.
Publicado: (2021) -
Maximum Sum of Evidence—An Evidence-Based Solution to Object Pose Estimation in Point Cloud Data
por: Phillips, Tyson, et al.
Publicado: (2021) -
Improved Graph Convolutional Neural Network for Dance Tracking and Pose Estimation
por: Zhang, Liangliang
Publicado: (2022) -
GC-MLP: Graph Convolution MLP for Point Cloud Analysis
por: Wang, Yong, et al.
Publicado: (2022)