Cargando…
Effects of Boride Orientation and Si Content on High-Temperature Oxidation Resistance of Directionally Solidified Fe–B Alloys
In this work, the as-cast directionally solidified (DS) Fe–B alloys with various Si contents and different boride orientation were designed and fabricated, and the as-cast microstructures and static oxidation behaviors of the DS Fe–B alloys were investigated extensively. The as-cast microstructure o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657067/ https://www.ncbi.nlm.nih.gov/pubmed/36363410 http://dx.doi.org/10.3390/ma15217819 |
Sumario: | In this work, the as-cast directionally solidified (DS) Fe–B alloys with various Si contents and different boride orientation were designed and fabricated, and the as-cast microstructures and static oxidation behaviors of the DS Fe–B alloys were investigated extensively. The as-cast microstructure of the DS Fe–B alloys consists of the well-oriented Fe(2)B columnar grains and α-Fe, which are strongly refined by Si addition. The oxidation interface of the scales in the DS Fe–B alloy with 3.50 wt.% Si demonstrates an obvious saw-tooth shaped structure and is embedded into the alternating distributed columnar layer structures of the DS Fe–B alloy with oriented Fe(2)B and α-Fe matrix, which is beneficial to improve the anti-peeling performance of the oxide film compared with lower amounts of Si addition in DS Fe–B alloys with oriented Fe(2)B [002] orientation parallel to the oxidation direction (i.e., oxidation diffusion direction, labeled as Fe(2)B(//) sample). In the DS Fe–B alloys with oriented Fe(2)B [002] orientation vertical to the oxidation direction (i.e., labeled as Fe(2)B(⊥) sample), due to the blocking and barrier effect of laminated-structure boride, Si is mainly enriched in the lower part of the oxide film to form a dense SiO(2) thin layer adhered to layered boride. As a result, the internal SiO(2) thin layer plays an obstructed and shielded role in oxidation of the substrate, which hinders the further internal diffusion of oxygen ions and improves the anti-oxidation performance of the Fe(2)B(⊥) sample, making the average anti-oxidation performance better than that of the Fe(2)B(//) sample. |
---|