Cargando…

An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets

Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefor...

Descripción completa

Detalles Bibliográficos
Autores principales: Khare, Smith K., Gaikwad, Nikhil, Bokde, Neeraj Dhanraj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657151/
https://www.ncbi.nlm.nih.gov/pubmed/36365824
http://dx.doi.org/10.3390/s22218128
_version_ 1784829619758694400
author Khare, Smith K.
Gaikwad, Nikhil
Bokde, Neeraj Dhanraj
author_facet Khare, Smith K.
Gaikwad, Nikhil
Bokde, Neeraj Dhanraj
author_sort Khare, Smith K.
collection PubMed
description Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefore, this paper proposes robust TQWT for automatically selecting optimum tuning parameters to decompose non-stationary EEG signals accurately. Three evolutionary optimization algorithms are explored for automating the tuning parameters of robust TQWT. The fitness function of the mean square error of decomposition is used. This paper also exploits channel selection using a Laplacian score for dominant channel selection. Important features elicited from sub-bands of robust TQWT are classified using different kernels of the least square support vector machine classifier. The radial basis function kernel has provided the highest accuracy of 99.78%, proving that the proposed method is superior to other state-of-the-art using the same database.
format Online
Article
Text
id pubmed-9657151
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96571512022-11-15 An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets Khare, Smith K. Gaikwad, Nikhil Bokde, Neeraj Dhanraj Sensors (Basel) Article Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefore, this paper proposes robust TQWT for automatically selecting optimum tuning parameters to decompose non-stationary EEG signals accurately. Three evolutionary optimization algorithms are explored for automating the tuning parameters of robust TQWT. The fitness function of the mean square error of decomposition is used. This paper also exploits channel selection using a Laplacian score for dominant channel selection. Important features elicited from sub-bands of robust TQWT are classified using different kernels of the least square support vector machine classifier. The radial basis function kernel has provided the highest accuracy of 99.78%, proving that the proposed method is superior to other state-of-the-art using the same database. MDPI 2022-10-24 /pmc/articles/PMC9657151/ /pubmed/36365824 http://dx.doi.org/10.3390/s22218128 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Khare, Smith K.
Gaikwad, Nikhil
Bokde, Neeraj Dhanraj
An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title_full An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title_fullStr An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title_full_unstemmed An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title_short An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
title_sort intelligent motor imagery detection system using electroencephalography with adaptive wavelets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657151/
https://www.ncbi.nlm.nih.gov/pubmed/36365824
http://dx.doi.org/10.3390/s22218128
work_keys_str_mv AT kharesmithk anintelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets
AT gaikwadnikhil anintelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets
AT bokdeneerajdhanraj anintelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets
AT kharesmithk intelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets
AT gaikwadnikhil intelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets
AT bokdeneerajdhanraj intelligentmotorimagerydetectionsystemusingelectroencephalographywithadaptivewavelets