Cargando…
An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefor...
Autores principales: | Khare, Smith K., Gaikwad, Nikhil, Bokde, Neeraj Dhanraj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657151/ https://www.ncbi.nlm.nih.gov/pubmed/36365824 http://dx.doi.org/10.3390/s22218128 |
Ejemplares similares
-
Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals
por: Khare, Smith K., et al.
Publicado: (2023) -
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method
por: Chen, Zhongye, et al.
Publicado: (2021)