Cargando…

In Situ Growth of Nanosilver on Fabric for Flexible Stretchable Electrodes

Flexible sensing can disruptively change the physical form of traditional electronic devices to achieve flexibility in information acquisition, processing, transmission, display, and even energy, and it is a core technology for a new generation of the industrial internet. Fabric is naturally flexibl...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Qingwei, Yin, Yuxiang, Zhang, Jingxin, Si, Wei, Hou, Wei, Qin, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657318/
https://www.ncbi.nlm.nih.gov/pubmed/36362024
http://dx.doi.org/10.3390/ijms232113236
Descripción
Sumario:Flexible sensing can disruptively change the physical form of traditional electronic devices to achieve flexibility in information acquisition, processing, transmission, display, and even energy, and it is a core technology for a new generation of the industrial internet. Fabric is naturally flexible and stretchable, and its knitted ability makes it flexibility and stretchability even more adjustable. However, fabric needs to be electrically conductive to be used for flexible sensing, which allows it to carry a variety of circuits. The dip-coating technique is a common method for preparing conductive fabrics, which are made conductive by attaching conductive fillers to the fabrics. However, the adhesion of the conductive fillers on the surface of such conductive fabrics is weak, and the conductive property will decay rapidly because the conductive filler falls off after repeated stretching, limiting the lifespan of flexible electronic devices based on conductive fabric. We chose multifunctional nanosilver as a conductive filler, and we increased the adhesion of nanosilver to fabric fiber by making nanosilver grow in situ and cover the fiber, so as to obtain conductive fabric with good conductivity. This conductive fabric has a minimum square resistance of 9 Ω/sq and has better electrical conductivity and more stable electrical properties than the conductive fabric prepared using the dip-coating process, and its square resistance did not increase significantlyafter 60 stretches.