Cargando…
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification sy...
Autores principales: | Masood, Farah, Sharma, Milan, Mand, Davleen, Nesathurai, Shanker, Simmons, Heather A., Brunner, Kevin, Schalk, Dane R., Sledge, John B., Abdullah, Hussein A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657335/ https://www.ncbi.nlm.nih.gov/pubmed/36366153 http://dx.doi.org/10.3390/s22218455 |
Ejemplares similares
-
Neurophysiological Characterization of a Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Fine-Wire EMG Electrodes
por: Masood, Farah, et al.
Publicado: (2019) -
Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders
por: Fricke, Christopher, et al.
Publicado: (2021) -
Convolutional Networks Outperform Linear Decoders in Predicting EMG From Spinal Cord Signals
por: Guo, Yi, et al.
Publicado: (2018) -
Surface EMG-Based Instantaneous Hand Gesture Recognition Using Convolutional Neural Network with the Transfer Learning Method
por: Yu, Zhipeng, et al.
Publicado: (2021) -
CSAC-Net: Fast Adaptive sEMG Recognition through Attention Convolution Network and Model-Agnostic Meta-Learning
por: Fan, Xinchen, et al.
Publicado: (2022)